Find the nth order derivative of the function y=3^{2x+1}

Tammy Todd

Tammy Todd

Answered question

2021-06-05

Find the nth order derivative of the function y=32x+1

Answer & Explanation

dieseisB

dieseisB

Skilled2021-06-06Added 85 answers

Step 1
We use the chain rule to find the first 4 derivatives.
y=32x+1
y(1)=32x+1(ln3)(2)=2ln332x+1
y(2)=2ln332x+1(ln3)(2)=(2ln3)232x+1
y(3)=(2ln3)232x+1(ln3)(2)=(2ln3)332x+1
y(4)=(2ln3)332x+1(ln3)(2)=(2ln3)432x+1
Step 2
Using this pattern we get:
y(n)=(2ln3)n132x+1(ln3)(2)=(2ln3)n32x+1
Answer: y(n)=(2ln3)n32x+1

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?