a) Write the sigma notation formula for the right Riemann sum R_{n} of the function

Clifland

Clifland

Answered question

2021-05-14

a) Write the sigma notation formula for the right Riemann sum Rn of the function f(x)=4x2 on the interval [0, 2] using n subintervals of equal length, and calculate the definite integral 02f(x)dx as the limit of Rn at n.
(Reminder: k=1nk=n(n+1)2, k=1nk2=n(n+1)(2n+1)6
b) Use the Fundamental Theorem of Calculus to calculate the derivative of F(x)=exxln(t2+1)dt

Answer & Explanation

SabadisO

SabadisO

Skilled2021-05-15Added 108 answers

Step 1
a) Given: f(x)=4x2, a=0, b=2, Δx=[ba]n=(20)n=(2n)
xi=a+iΔx=0+i(2n)=(2in)
f(xi)=4(2in)2
Rn=i=1nf(xi)Δx
Rn=i=1n(4(2in)2)(2n)
02f(x)dx=limnRn
02f(x)dx=limni=1n(4(2in)2)(2n)
02f(x)dx=limni=1n(1i2n2)(8n)
02f(x)dx=limni=1n8((1n)(i2n3))
02f(x)dx=limn8((nn)n(n+1)(2n+1)6n3)
02f(x)dx=limn8(1(1(1+(1n))2+(1n)6
02f(x)dx=8×11(1+0)(2+0)6
02f(x)dx=8×(126)
02f(x)dx=8×(23)
02f(x)dx=(163)
Step 2
b) ddxp(x)q(x)f(t)dt=f(q(x))×q(x)f(p(x))×p(x)
F(x)=exxln(t2+1)dt
F(x)=(ln(x2+1))×(1)(ln((ex)2+1))×(ex)

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?