Use continuity to evaluate the limit. \lim_{x\rightarrow \pi}\sin(x+\sin x)ZS

avissidep

avissidep

Answered question

2021-10-17

Use continuity to evaluate the limit. limxπsin(x+sinx)

Answer & Explanation

au4gsf

au4gsf

Skilled2021-10-18Added 95 answers

x and sinx are continuous, therefore x+sinx is continuous
Recall that : f(g(x)) is continuous if f(x) and g(x) are continuous
Therefore sin(x+sinx) is a continuous function
Recall that : If f(x) is continuous at x=a, then limxaf(x)=f(a)
Therefore
limxπsin(x+sinx)=sin(π+sinπ)=sin(π+0)=sinπ=0
Result:
limxπsin(x+sinx)=0

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?