Use Taylor's theorem to evaluate the following limits. lim_{xrightarrow0}frac{3sin^2(x)+2sin^4(x)}{3xtan(x)}

Alyce Wilkinson

Alyce Wilkinson

Answered question

2021-02-23

Use Taylors

Answer & Explanation

svartmaleJ

svartmaleJ

Skilled2021-02-24Added 92 answers

Evaluate limit using Taylor’s theorem.
Given:
limx03sin2(x)+2sin4(x)3xtan(x)
Taylor series expansion of trigonometric functions,
sin2x=x2x43+2x645x8315+...
sin4x=x42x63+x8534x10945+...
tanx=x+x33+2x515+17x7315+62x92835+...
Substitute the series,
limx03(x2x43+2x645x8315+...)+2(x42x63+x8534x10945+...)3x(x+x33+2x515+17x7315+62x92835+...)
limx0(3x23x43+3(2x6)453x8315+...)+(2x42(2x6)3+2x852(34x10)945+...)(3x2+3x43+32x615+317x8315+362x102835+...))
Divide x2 in both numerator and denominator,
limx>0(33x23+3(2x4)453(x6)315+...)+(2x22(2x4)3+2x652(34x8)945+...)(3+3x23+(32x4)15+(317x6)315+(362x8)2835+...)
Apply limit, x tends to 0
=3/3
1
Result: 1

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?