Evaluate the following integrals. intfrac{e^{sin x}}{sec x}dx

nicekikah

nicekikah

Answered question

2021-02-14

Evaluate the following integrals.
esinxsecxdx

Answer & Explanation

Alix Ortiz

Alix Ortiz

Skilled2021-02-15Added 109 answers

The given integral is,
I=esinxsecxdx
Using trigonometric identity, cosθ=1secθ
I=cosx(esinx)dx
Using substitution method,
esinx=t
ddx(esinx)=dtdx
Let[dd(sinx)(esinx)][ddx(sinx)]=dtdx
(esinx)(cosx)=dtdx
(esinx)(cosx)dx=dt
Then the given integral gets transformed as, 
I=dt=t+C
Putting back the value of t, we get
I=esinx+C
Therefore, the value of the given integral is esinx+C

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?