How to integrate \frac{\cos(7x)-\cos(8x)}{1+2\cos(5x)}

Ernest Ryland

Ernest Ryland

Answered question

2022-01-03

How to integrate
cos(7x)cos(8x)1+2cos(5x)

Answer & Explanation

puhnut1m

puhnut1m

Beginner2022-01-04Added 33 answers

The rule is to multiply above and below by the sin(5x) here
sin(5x)(cos(7x)cos(8x))sin(5x)+sin(10x)
=sin(5x)2sin(15x2)sin(x2)2sin(15x2)cos(5x2)
=2sin(5x2)sin(x2)
Now its easy integration right?
kaluitagf

kaluitagf

Beginner2022-01-05Added 38 answers

HINT:
cosycos(6A+y)1+2cos2A=2sin(3A+y)3sin3A1+2(12sin2A)
=2sin(3A+y)sinA(34sin2A)34sin2A=cos(2A+y)cos(4A+y)
Here 2A=5x, 6A+y=8xy=7x
karton

karton

Expert2022-01-11Added 613 answers

Let
I=cos7xcos8x1+2cos5xdx=(cos7x+cos3x)(cos8x+cos2x)cos3x+cos2x1+2cos5xdxcosC+cosD=2cos(C+D2)cos(CD2)I=2cos5xcos2x+cos2x2cos5xcos3xcos3x1+2cos5xdxI=(2cos5x+1)(cos2xcos3x)1+2cos5xdx=(cos2xcos3x)dxSoI=sin2x2sin3x3+C

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?