Integrate: \int\frac{x^2}{(x\cos x-\sin x)(x\sin x+\cos x)}dx

piarepm

piarepm

Answered question

2022-01-05

Integrate:
x2(xcosxsinx)(xsinx+cosx)dx

Answer & Explanation

Kayla Kline

Kayla Kline

Beginner2022-01-06Added 37 answers

My solution:
Let I=x2(xsinx+cosx)(xcosxsinx)dx
So
I=tan2θsec2θ(tanθsin(tanθ)+cos(tanθ))×(tanθcos(tanθ)sin(tanθ))dθ
So
I=tan2θsec2θcos2θ(sinθsin(tanθ)+cos(tanθ)cosθ)
So
I=2tan2θ2cos(θtanθ)sin(θtanθ)dθ=2tan2θsin(2θ2tanθ)dθ
Now Let (2θ2tanθ)=u, then (22sec2θ)dθ=du2tan2θdθ=du
So
I=1sinudu=cscudu
=lntan(u2)+C
=lntan(θtanθ)+C
So
I=ln|cos(θtanθ)sin(θtanθ)|+C
=ln|cosθ(tanθ)+sinθsin(tanθ)sinθsin(tanθ)|+C
So
Heather Fulton

Heather Fulton

Beginner2022-01-07Added 31 answers

Another Solution:
Let I=x2(xsinx+cosx)(xcosxsinx)dx
So I=2x2(x21)sin2x+2xcos2xdx
Now (x21)sin2x+2xcos2x=(x21)2+(2x)2[(x21x21)sin2x+(2xx2+1)cos2x]
Now we can write (x21)sin2x+2xcos2x=(x2+1)sin(2x+α)
Where (x21x2+1)=cosα and (2xx2+1)=sinα
and so tanα=(2xx21)α=tan1(2xx21)
So Integral I=csc(2x+α)(2x2x2+1)dx
Now let (2x+α)=t[2x+tan1(2xx21)]=t, then (2x2x2+1)dx=dt
So integral I=csctdt=ln|tant2|+C=ln|tan(x+α2)|+C
star233

star233

Skilled2022-01-11Added 403 answers

HINT :
Rewrite the integrand
x2(xcosxsinx)(xsinx+cosx)
as
xcosxxsinx+cosx+xsinxxcosxsinx
then
sinx+xcosxsinxxsinx+cosx+cosx+xsinxcosxxcosxsinx
Now let u=xsinx+cosx and v=xcosxsinx

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?