Limit \(\displaystyle\lim_{\lim}{i}{t}{s}{\left\lbrace{x}\to{0}\right\rbrace}{\left\lbrace{\frac{{{\tan{{\left\lbrace{x}\right\rbrace}}}-{\sin{{\left\lbrace{x}\right\rbrace}}}}}{{{x}^{{3}}}}}\right\rbrace}\) So what I tried is: \(\displaystyle\lim_{{{x}\to{0}}}{\frac{{{\frac{{{\sin{{\left\lbrace{x}\right\rbrace}}}}}{{{\cos{{\left\lbrace{x}\right\rbrace}}}}}}-{\sin{{\left\lbrace{x}\right\rbrace}}}}}{{{x}^{{3}}}}}=\lim_{{{x}\to{0}}}{\frac{{{\left\lbrace{\sin{{\left\lbrace{x}\right\rbrace}}}\right\rbrace}{\left({\frac{{{1}}}{{{\cos{{x}}}}}}-{1}\right)}}}{{{x}\cdot{x}^{{2}}}}}\) From

dotzis16xd

dotzis16xd

Answered question

2022-03-21

Limit limx0{tan{x}sin{x}x3}
So what I tried is:
limx0sin{x}cos{x}sin{x}x3=limx0{sin{x}}(1cosx1)xx2
From here, using the rule limx0sin{x}x=1 it remains to evaluate
limx01cos{x}1x2
 

Answer & Explanation

Ronald Martinez

Ronald Martinez

Beginner2022-03-22Added 7 answers

From your last line,
1cos{x}1x2=1cos2(x)cos(x)(1+cos(x))x2=1cos(x)(1+cos(x))(sin(x)x)2
Jonathon Hanson

Jonathon Hanson

Beginner2022-03-23Added 9 answers

tanxsinxx3=tanxx1cosxx2=tanxx2sin2x2x2=12tanxx(sinx2x2)212

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?