smaakt4ucq

2022-03-24

How do I evaluate the limit given ?

$\underset{x\to \mathrm{\infty}}{lim}\frac{{x}^{x}-{(x-1)}^{x}}{{x}^{x}}$

LiaisyAciskriuu

Beginner2022-03-25Added 10 answers

Then

$\underset{x\to \mathrm{\infty}}{lim}\frac{{x}^{x}-{(x-1)}^{x}}{{x}^{x}}=\underset{x\to \mathrm{\infty}}{lim}[1-{\left(\frac{x-1}{x}\right)}^{x}]=\underset{x\to \mathrm{\infty}}{lim}[1-{(1-\frac{1}{x})}^{x}]$

Notice

$\underset{x\to \mathrm{\infty}}{lim}{(1-\frac{1}{x})}^{x}={e}^{\underset{x\to \mathrm{\infty}}{lim}x\mathrm{ln}(1-\frac{1}{x})}$

Try making a substitution like$u=\frac{1}{x}$ to get a situation in which l'Hôpital's rule applies to find this limit. Remember this will also change the value the limit approaches. It should look something like this:

$e}^{\underset{u\to 0}{lim}\frac{\mathrm{ln}(1-u)}{u}}={e}^{\underset{u\to 0}{lim}\frac{1}{u-1}$

Notice

Try making a substitution like

Jeffrey Jordon

Expert2022-07-05Added 2605 answers

Find the local maximum and minimum values and saddle points of the function. If you have three-dimensional graphing software, graph the function with a domain and viewpoint that reveal all the important aspects of the function

$f(x,y)={x}^{3}-6xy+8{y}^{3}$ $\frac{1}{\mathrm{sec}(x)}$ in derivative?

What is the derivative of $\mathrm{ln}(x+1)$?

What is the limit of $e}^{-x$ as $x\to \infty$?

What is the derivative of $f\left(x\right)={5}^{\mathrm{ln}x}$?

What is the derivative of $e}^{-2x$?

How to find $lim\frac{{e}^{t}-1}{t}$ as $t\to 0$ using l'Hospital's Rule?

What is the integral of $\sqrt{9-{x}^{2}}$?

What is the derivative of $f\left(x\right)=\mathrm{ln}\left[{x}^{9}{(x+3)}^{6}{({x}^{2}+7)}^{5}\right]$ ?

What Is the common difference or common ratio of the sequence 2, 5, 8, 11...?

How to find the derivative of $y={e}^{5x}$?

How to evaluate the limit $\frac{\mathrm{sin}\left(5x\right)}{x}$ as x approaches 0?

How to find derivatives of parametric functions?

What is the antiderivative of $-5{e}^{x-1}$?

How to evaluate: indefinite integral $\frac{1+x}{1+{x}^{2}}dx$?