What is the equation of the line tangent

gabolzm6d

gabolzm6d

Answered question

2022-04-07

What is the equation of the line tangent to f(x)=1ex3x at x=0?

Answer & Explanation

Videoad3u

Videoad3u

Beginner2022-04-08Added 15 answers

Explanation:
At x=0, the function has y-value
f(0)=1e03(0)=11=1
We now rewrite the function as
f(x)=(ex3x)12
We can find this derivative using the chain rule.
f(x)=12u32(ex3)=ex32(ex3x)32
The slope of the tangent is hence
f(0)=e032(e03(0))32
f(0)=22
f(0)=22
f'(0)=1
Now write the equation of the tangent.
yy1=m(xx1)
y-1=1(x-0)
y=x+1

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?