f(𝜃) = 3 sin(𝜃) − 4 sec(𝜃)

alyammahi.hanadi

alyammahi.hanadi

Answered question

2022-04-15

f(𝜃) = 3 sin(𝜃) − 4 sec(𝜃) tan(𝜃)
 

     on the interval (-𝜋/2 ,𝜋/2)

 

 

 

 

 

Answer & Explanation

nick1337

nick1337

Expert2022-06-30Added 777 answers

3sin(θ)-4sec(θ)tan(θ)

Write 3sin(θ)-4sec(θ)tan(θ) as a function.

f(θ)=3sin(θ)-4sec(θ)tan(θ)

The function F(θ) can be found by finding the indefinite integral of the derivative f(θ).

F(θ)=f(θ)dθ

Set up the integral to solve.

F(θ)=3sin(θ)-4sec(θ)tan(θ)dθ

Split the single integral into multiple integrals.

3sin(θ)dθ+-4sec(θ)tan(θ)dθ

Since 3 is constant with respect to θ, move 3 out of the integral.

3sin(θ)dθ+-4sec(θ)tan(θ)dθ

The integral of sin(θ) with respect to θ is -cos(θ).

3(-cos(θ)+C)+-4sec(θ)tan(θ)dθ

Since -4 is constant with respect to θ, move -4 out of the integral.

3(-cos(θ)+C)-4sec(θ)tan(θ)dθ

Since the derivative of sec(θ) is sec(θ)tan(θ), the integral of sec(θ)tan(θ) is sec(θ).

3(-cos(θ)+C)-4(sec(θ)+C)

Simplify.

-3cos(θ)-4sec(θ)+C

The answer is the antiderivative of the function f(θ)=3sin(θ)-4sec(θ)tan(θ).

F(θ)=3cos(θ)4sec(θ)+C

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?