What is &#x222B;<!-- ∫ -->

measgachyx5q9

measgachyx5q9

Answered question

2022-05-06

What is 8 9  x cos ( 3 x ) d x?

Answer & Explanation

Ellie Meyers

Ellie Meyers

Beginner2022-05-07Added 15 answers

Simplify.

8xcos(3x)9dx

Since 89 is constant with respect to x, move 89 out of the integral.

89xcos(3x)dx

Integrate by parts using the formula udv=uv-vdu, where u=x and dv=cos(3x).

89(x(13sin(3x))-13sin(3x)dx)

Simplify.

89(xsin(3x)3-sin(3x)3dx)

Since 13 is constant with respect to x, move 13 out of the integral.

89(xsin(3x)3-(13sin(3x)dx))

Let u=3x. Then du=3dx, so 13du=dx. Rewrite using u and du.

89(xsin(3x)3-13sin(u)13du)

Combine sin(u) and 13.

89(xsin(3x)3-13sin(u)3du)

Since 13 is constant with respect to u, move 13 out of the integral.

89(xsin(3x)3-13(13sin(u)du))

Simplify.

89(xsin(3x)3-19sin(u)du)

The integral of sin(u) with respect to u is -cos(u).

89(xsin(3x)3-19(-cos(u)+C))

Rewrite 89(xsin(3x)3-19(-cos(u)+C)) as 89(xsin(3x)3+cos(u)9)+C.

89(xsin(3x)3+cos(u)9)+C

Replace all occurrences of u with 3x.

89(xsin(3x)3+cos(3x)9)+C

Simplify.

8xsin(3x)27+8cos(3x)81+C

Reorder terms.

827xsin(3x)+881cos(3x)+C

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?