Let f ( x , y ) = ( x 2 </msup> + y 2 </msup> + 2

jistefaftexia99kq6

jistefaftexia99kq6

Answered question

2022-05-14

Let f ( x , y ) = ( x 2 + y 2 + 2 ) x y defined on R 2 and let g ( x , y ) be a degree 2 polynomial in two variables.
Suppose lim ( x , y ) ( 0 , 0 ) g ( x , y ) f ( x , y ) x 2 + y 2 = 0 . Then, determine g ( x , y )

Answer & Explanation

partyjnopp9wa

partyjnopp9wa

Beginner2022-05-15Added 17 answers

Recall that for e t = 1 + t + O ( t 2 ) and ln ( 1 + t ) = t + o ( t ). Therefore,for ( x , y ) ( 0 , 0 )
( x 2 + y 2 + 2 ) x y = exp ( x y ln ( x 2 + y 2 + 2 ) ) = 1 + x y ln ( x 2 + y 2 + 2 ) + O ( x 2 y 2 ) = 1 + x y ( ln ( 2 ) + ln ( 1 + x 2 + y 2 2 ) ) + o ( x 2 + y 2 ) = 1 + x y ( ln ( 2 ) + x 2 + y 2 2 + o ( x 2 + y 2 ) ) + o ( x 2 + y 2 ) = 1 + ln ( 2 ) x y + o ( x 2 + y 2 ) .
Hence g ( x , y ) = 1 + ln ( 2 ) x y. In particular a 3 = ln ( 2 )

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?