Evaluate
<msubsup>
∫<!-- ∫ -->
0
<mi mathvariant="normal">∞<!-- ∞ -->
lnwlf1728112xo85f
Answered question 2022-05-14
Evaluate ∫ 0 ∞ x 2 ln x x 4 + x 2 + 1 d x by the residue theorem
Answer & Explanation You can use Feynman's method to evaluate. Let I ( a ) = ∫ 0 ∞ x a x 4 + x 2 + 1 d x . Then I ( a ) = ∫ 0 1 x a + x 2 − a x 4 + x 2 + 1 d x = ∫ 0 1 ( 1 − x 2 ) ( x a + x 2 − a ) 1 − x 6 d x = ∫ 0 1 ∑ n = 0 ∞ ( 1 − x 2 ) ( x a + x 2 − a ) x 6 n d x = ∑ n = 0 ∞ ∫ 0 1 ( 1 − x 2 ) ( x a + x 2 − a ) x 6 n d x = ∑ n = 0 ∞ ∫ 0 1 ( x 6 n + a + x 6 n + 2 − a − x 6 n + 2 + a − x 6 n + 4 − a ) d x = ∑ n = 0 ∞ ( 1 6 n + a + 1 + 1 6 n + 3 − a − 1 6 n + 3 + a − 1 6 n + 5 − a ) and hence I ′ ( 2 ) = ∑ n = 0 ∞ ( − 2 ( 6 n + 3 ) 2 + 1 ( 6 n + 1 ) 2 + 1 ( 6 n + 5 ) 2 ) = − 2 9 ∑ n = 0 ∞ 1 ( 2 n + 1 ) 2 + ∑ n = 0 ∞ ( 1 ( 6 n + 1 ) 2 + 1 ( 6 n + 5 ) 2 ) = − 2 9 ∑ n = 0 ∞ 1 ( 2 n + 1 ) 2 + ∑ n = − ∞ ∞ 1 ( 6 n + 1 ) 2 = − 2 9 π 2 8 + π 2 9 = π 2 12 . Here ∑ n = 0 ∞ 1 ( 2 n + 1 ) 2 = π 2 8 , ∑ n = − ∞ ∞ 1 ( 6 n + 1 ) 2 = π 2 9 are used.
If we have g ( z ) with a simple zero at z = z 0 , then (1a) Res z = z 0 ( f ( z ) g ( z ) ) = lim z → z 0 ( z − z 0 ) f ( z ) g ( z ) (1b) = f ( z 0 ) g ′ ( z 0 ) Applying (1), we get (2a) Res z = e π i / 3 ( z 2 z 4 + z 2 + 1 ) = 1 4 z + 2 / z (2b) = 3 − i 3 12 (3a) Res z = e π i / 3 ( z 2 log ( z ) z 4 + z 2 + 1 ) = 3 − i 3 12 π i 3 (3b) = π 3 + 3 i 36 (4a) Res z = e 2 π i / 3 ( z 2 z 4 + z 2 + 1 ) = 1 4 z + 2 / z (4b) = − 3 − i 3 12 (5a) Res z = e 2 π i / 3 ( z 2 log ( z ) z 4 + z 2 + 1 ) = − 3 − i 3 12 2 π i 3 (5b) = π 2 3 − 6 i 36 Applying the Residues You had gotten (6) ∫ − ∞ ∞ z 2 log ( z ) d z z 4 + z 2 + 1 = 2 ∫ 0 ∞ z 2 log ( z ) d z z 4 + z 2 + 1 + π i 2 ∫ − ∞ ∞ z 2 d z z 4 + z 2 + 1 which gives (7a) ∫ 0 ∞ z 2 log ( z ) d z z 4 + z 2 + 1 = 1 2 ∫ − ∞ ∞ z 2 log ( z ) d z z 4 + z 2 + 1 − π i 4 ∫ − ∞ ∞ z 2 d z z 4 + z 2 + 1 (7b) = π i ( π 3 − i 12 ) + π 2 2 ( − i 3 6 ) (7c) = π 2 12 Explanation: (7a): algebraic manipulation of (6) (7b): apply (3) and (5) to the first integral and (2) and (4) to the second integral (7c): evaluate We used an upper half-plane semi-circular contour in both integrals on the right-hand side of (7a). Therefore, we included the residues from the poles at e π i / 3 and e 2 π i / 3
Do you have a similar question?
Recalculate according to your conditions!
Recalculate