If
F
1
</msub>
and
F
2
</msub>
are the antiderivatives of f(
Nylah Hendrix
Answered question
2022-07-04
If and are the antiderivatives of f(x), then ?
Answer & Explanation
Ordettyreomqu
Beginner2022-07-05Added 22 answers
Step 1 The statement is equivalent to: but as others have touched on, the equality is not maintained for a definite integral. What this means is that whilst:
Step 2 this does not imply that either of the following are true:
which is just the same as how: This is what it means for functions to differ by a constant, and how two functions can be antiderivatives of the same function
gorgeousgen9487
Beginner2022-07-06Added 4 answers
Step 1 It doesn't mean they cannot be equal. It means they aren't necessarily equal. If we know that , then it might be true that
Step 2 But we could also have
So we can't conclude that , but we also cannot prove . If this was a true / false question, then technically the statement is undecided. But by my powers of reading the minds of problem authors, they didn't mean to ask whether is equal to , but whether is necessarily equal to (this is just an implicit part to many of these problems that really, really ought to be explicit), which means that the intended answer is "False". "Is it true that" is often used synonymously with "Does it follow that", and that's a shame.