Find the derivative y′_x (edit: y′_x=(dy)/(dx)) from the equation y^3+x^2=xe^(y^2)−y sin x

Owen Mathis

Owen Mathis

Answered question

2022-11-04

Find the derivative y x (edit: y x = d y d x ) from the equation
y 3 + x 2 = x e y 2 y sin x

Answer & Explanation

levraijournalk1o

levraijournalk1o

Beginner2022-11-05Added 10 answers

Let y(x) be the solution, then:
0 = x ( x 2 + y ( x ) 3 x e y ( x ) 2 + y ( x ) sin ( x ) ) =
= 3 y ( x ) 2 y ( x ) 2 x e y ( x ) 2 y ( x ) y ( x ) + sin ( x ) y ( x ) e y ( x ) 2 + y ( x ) cos ( x ) + 2 x
With this we have:
y ( x ) = e y ( x ) 2 + y ( x ) cos ( x ) + 2 x 3 y ( x ) 2 + 2 x e y ( x ) 2 y ( x ) sin ( x ) =
= x 2 y ( x ) 3 y ( x ) sin ( x ) + x y ( x ) cos ( x ) x ( 2 x 2 y ( x ) + 2 y ( x ) 4 3 y ( x ) 2 + 2 y ( x ) 2 sin ( x ) sin ( x ) )
kemecryncqe9

kemecryncqe9

Beginner2022-11-06Added 6 answers

Hint:
Deriving with respect to x we have:
d d x ( y 3 + x 2 x e y 2 + y sin x ) = d d x ( y 3 ) + d d x ( x 2 ) d d x ( x e y 2 ) + d d x ( y sin x ) = 0
now use the product rule and the chain rule to evaluate the derivatives:
d d x ( y 3 ) = 2 y 2 d y d x
d d x ( x 2 ) = 2 x
d d x ( x e y 2 ) = e y 2 + 2 x y e y 2 d y d x
d d x ( y sin x ) = sin x d y d x + y cos x
now put all together and find d y d x

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?