How to find ((d^2)y)/(dx^2)?

laminarskq2p

laminarskq2p

Answered question

2023-02-21

How to find ((d^2)y)/(dx^2)?

Answer & Explanation

Camuccinirk84

Camuccinirk84

Beginner2023-02-22Added 4 answers

Defining
f ( x , y ( x ) ) = 2 x y ( x ) + 2 y ( x ) 2 - 13 = 0 then
d f d x = 2 y + 2 x y + 4 y y = 0 and
d d x d f d x = 4 y + 2 x y + 4 y 2 + 4 y y = 0
after substitution of y we have
y = 2 x y + 2 y 2 ( x + 2 y ) 3 = 13 ( x + 2 y ) 3
but y = 1 2 ( - x ± 26 + x 2 ) so finally
y = ± 13 ( 26 + x 2 ) 3 2
Ruby Rollins

Ruby Rollins

Beginner2023-02-23Added 5 answers

2 x y + 2 y 2 = 13
Differentiating wrt x and applying the product rule gives us:
2 { ( x ) ( d y d x ) + ( 1 ) ( y ) } + 4 y d y d x = 0
x d y d x + y + 2 y d y d x = 0 d y d x = - y x + 2 y
Differentiating again wrt x and applying the product rule (twice) gives us:
{ ( x ) ( d 2 y d x 2 ) + ( 1 ) ( d y d x ) } + d y d x + 2 { ( y ) ( d 2 y d x 2 ) + ( 2 d y d x ) ( d y d x ) } = 0
x d 2 y d x 2 + d y d x + d y d x + 2 y d 2 y d x 2 + 2 ( d y d x ) 2 = 0
x d 2 y d x 2 + 2 d y d x + 2 y d 2 y d x 2 + 2 ( d y d x ) 2 = 0
( x + 2 y ) d 2 y d x 2 + 2 ( - y x + 2 y ) + 2 ( - y x + 2 y ) 2 = 0
( x + 2 y ) d 2 y d x 2 = 2 y x + 2 y - 2 y 2 ( x + 2 y ) 2
d 2 y d x 2 = 2 y ( x + 2 y ) 2 - 2 y 2 ( x + 2 y ) 3
Overlaying a common denominator results in:
d 2 y d x 2 = ( 2 y ) ( x + 2 y ) - ( 2 y 2 ) ( x + 2 y ) 3
d 2 y d x 2 = ( 2 x y + 4 y 2 - 2 y 2 ) ( x + 2 y ) 3
d 2 y d x 2 = ( 2 x y + 2 y 2 ) ( x + 2 y ) 3
d 2 y d x 2 = 13 ( x + 2 y ) 3 (as 2 x y + 2 y 2 = 13 )

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?