How to find (dy)/(dx) given x cos(2x+3y)=y sinx?

pagtuboy2b

pagtuboy2b

Answered question

2023-03-02

How to find d y d x given x cos ( 2 x + 3 y ) = y sin x ?

Answer & Explanation

Aaliyah Padilla

Aaliyah Padilla

Beginner2023-03-03Added 10 answers

We have:

x cos ( 2 x + 3 y ) = y sin x


Method 1 - Implicit Differentiation
Applying the chain rule and product rule, we obtain:

( x ) ( d d x cos ( 2 x + 3 y ) ) + ( d d x x ) ( cos ( 2 x + 3 y ) ) = ( y ) ( d d x sin x ) + ( d d x y ) ( sin x )
x ( d d x cos ( 2 x + 3 y ) ) + cos ( 2 x + 3 y ) = y cos x + sin x d y d x
x ( - sin ( 2 x + 3 y ) d d x ( 2 x + 3 y ) ) + cos ( 2 x + 3 y ) = y cos x + sin x d y d x
- x sin ( 2 x + 3 y ) ( 2 + 3 d y d x ) + cos ( 2 x + 3 y ) = y cos x + sin x d y d x

Now we multiply out and collect terms:

- 2 x sin ( 2 x + 3 y ) - 3 x sin ( 2 x + 3 y ) d y d x + cos ( 2 x + 3 y ) = y cos x + sin x d y d x

Factoring out d y d x we get:

d y d x ( sin x + 3 x sin ( 2 x + 3 y ) ) = cos ( 2 x + 3 y ) - 2 x sin ( 2 x + 3 y ) - y cos x
d y d x = cos ( 2 x + 3 y ) - 2 x sin ( 2 x + 3 y ) - y cos x sin x + 3 x sin ( 2 x + 3 y )


Method 2 - Using the Implicit Function Theorem:

d y d x = - f d x f d y

Where:

f ( x , y ) = 0

We have:
Let:

f ( x , y ) = x cos ( 2 x + 3 y ) - y sin x

Then the partial derivatives are:

f x = ( x ) ( x cos ( 2 x + 3 y ) ) + ( x x ) ( cos ( 2 x + 3 y ) ) - y cos x
              = x ( - 2 sin ( 2 x + 3 y ) ) + cos ( 2 x + 3 y ) - y cos x
              = - 2 x sin ( 2 x + 3 y ) + cos ( 2 x + 3 y ) - y cos x

And:

f y = - x sin ( 2 x + 3 y ) ( 3 ) - sin x
              = - ( 3 x sin ( 2 x + 3 y ) + sin x )

And so:

d y d x = - - 2 x sin ( 2 x + 3 y ) + cos ( 2 x + 3 y ) - y cos x - ( 3 x sin ( 2 x + 3 y ) + sin x )
            = - 2 x sin ( 2 x + 3 y ) + cos ( 2 x + 3 y ) - y cos x 3 x sin ( 2 x + 3 y ) + sin x

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?