Change from rectangular to spherical coordinates. (Let \rho\geq0,\ 0\leq\theta\leq\2\pi, and 0\leq\phi\leq\pi.)a) (0,\ -8,\ 0)(\rho,\theta, \phi)=?b) (-1,\ 1,\ -2)(\rho, \theta, \phi)=?

Khaleesi Herbert

Khaleesi Herbert

Answered question

2021-05-14

Change from rectangular to spherical coordinates. (Let ρ0, 0θ2π, and 0ϕπ.)
a) (0, 8, 0)(ρ,θ,ϕ)=?
b) (1, 1, 2)(ρ,θ,ϕ)=?

Answer & Explanation

Maciej Morrow

Maciej Morrow

Skilled2021-05-15Added 98 answers

Step 1
a) Consider the rectangular coordinate (0, 8, 0)
The objective is to convert the rectangular coordinate to spherical coordinate (ρ,θ,ϕ)
Here, ρ0, 0θ2π, 0ϕπ
Consider the following statement:
The point P in R3 with rectangular coordinates (x,y,z) and spheerical coordinates (ρ,θϕ)
The relation between rectangular coordinates (x,y,z) and spherical coordinates (ρ,θϕ) is,
x=ρsinϕcosθ
y=ρsinϕsinθ
z=ρcosϕ
Step 2
The rectangular coordinate is (x,y,z)=(0, 8, 0)
That is, x=0, y=8, z=0.
From the statement, it can be inferred that
ρ=x2+y2+z2
=02+(8)2+02
{x=0, y=8,z=0}
=64
=8
From the statement, it can be inferred that
z=ρcosϕ
0=8cosϕ
{z=0,ρ=8}
cosϕ=0
ϕ=π2
{0ϕπ}
Step 3
From the statement, it can be inferred that
y=ρsinϕsinθ
sinθ=yρsinϕ
Replace y=8,ρ=8,ϕ=π2
sinθ=88sinπ2
=1
{sinπ2=1}
θ=3π2
{0θπ2}
Therefore, the spherical coordinate of the point (0, 8, 0) is (8, 3π2, π2)
Step 4
Consider the rectangular coordinate (1, 1, 2)
The objective is to convert the rectangular coordinate to spherical coordinate (ρ,θ,ϕ).
Consider the following statement:
The point P in R3 with rectangular coordinates (x,y,z) and spherical coordinates (ρ,θ,ϕ).
The relation between rectangular coordinates (x,y,z) and spherical coordinates (ρ,θ,ϕ) is,
x=ρsinϕcosθ
y=ρsinϕsinθ
z=ρcosϕ
The rectangular coordinate is (x,y,z)=(1, 1, 2)
That is, x=1, y=1, z=2.
Thus, from the statement,
ρ=x2+y2+z2
=(1)2+(1)2+(2)2
{x=1, y=1, z=2}
=1+1+4
=6
From the statement, it can be inferred that
z=ρcosϕ
2=6cosϕ
 

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?