Find the indefinite integral. \int \csc 2xdx

Chris Cruz

Chris Cruz

Answered question

2021-12-21

Find the indefinite integral.
csc2xdx

Answer & Explanation

eskalopit

eskalopit

Beginner2021-12-22Added 31 answers

Step 1
Consider the given integral.
I=csc2xdx
Replace u=2x in the integral.
u=2x
du=2dx
12du=dx
Step 2
Put the value in the integral.
I=12cscu(cscu+cotu)cscu+cotudu
=12(csc2u+cscucotu)cscu+cotudu
Putcscu+cotu=t in the integral.
cscu+cotu=t
(csc2u+cotucscu)du=dt
(csc2u+cotucscu)du=dt
Step 3
Substitute all the values in the integral.
I=12dtt
=12ln|t|+c
=12ln|cscu+cotu|+c
=12ln|1+cosusinu|+c
=12ln|1+cos2xsin2x|+c
=12ln|2cos2x2sinxcosx|+c
=12ln|tanx|+c

Jillian Edgerton

Jillian Edgerton

Beginner2021-12-23Added 34 answers

csc(2x)dx
Substitution u=2xdudx=2dx=12du:
=12csc(u)du
Now we calculate:
csc(u)du
We expand the fraction by csc(u)+cot(u):
=csc(u)(csc(u)+cot(u))csc(u)+cot(u)du
We use the distributive property:
=csc2(u)+cot(u)csc(u)csc(u)+cot(u)du
Substitution v=csc(u)+cot(u)dvdu=csc2(u)cot(u)csc(u)
du=1csc2(u)cot(u)csc(u)dv:
=1vdv
Now we calculate:
1vdv
This is the well-known tabular integral:
=ln(v)
We substitute the already calculated integrals:
1vdv
=ln(v)
Reverse replacement v=csc(u)+cot(u):
=ln(csc(u)+cot(u))
We substitute the already calculated integrals:
12csc(u)du
=ln(csc(u)+cot(u))2
Reverse replacement u=2x:
=ln(csc(2x)+cot(2x))2
The problem has been solved. Applying the modulus to the logarithm argument expands its range:
nick1337

nick1337

Expert2021-12-28Added 777 answers

csc(2x)dx
Transform the expression
csc(t)2dt
Use properties of integrals
12×csc(t)dt
Evaluate the integral
12×(ln(|csc(t)+cot(t)|))
Substitute back
12×(ln(|csc(2x)+cot(2x)|))
Simplify
12×ln(|cos(x)sin(x)|)
Add C
Solution
12×ln(|cos(x)sin(x)|)+C

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?