Evaluate the integral. \int \tan^{5}xdx

Holly Guerrero

Holly Guerrero

Answered question

2021-12-31

Evaluate the integral.
tan5xdx

Answer & Explanation

Alex Sheppard

Alex Sheppard

Beginner2022-01-01Added 36 answers

Step 1
Split tan5x into simpler powers tan3x and tan2x and change tan2x to sec2x1 and simplify.
tan5xdx=tan3x(tan2xdx)
=tan3x(sec2x1)dx
=(tan3xsec2xtan3x)dx
Step 2
use the integral theorem and integrate both the of (tan3xsec2xtan3x)dx terms with respect to dx and simplify to obtain the value of the integral.
(tan3xsec2xtan3x)dx=tan3xsec2xdxtan3xdx
=(tan3xsec2x)dxtan2xdx(tanx)dx
=tan3xsec2xdx(sec2x1)tanxdx
=tan3xsec2xdxtanxsec2xdx+tanxdx
=14tan4x12tan2x+lnsecx+C
Linda Birchfield

Linda Birchfield

Beginner2022-01-02Added 39 answers

tan(x)5dx
Evaluate the integral
14×tan(x)4tan(x)3dx
Evaluate the integral
14×tan(x)4(12×tan(x)2tan(x)dx)
Expand the expression
14×tan(x)4(12×tan(x)2sin(x)cos(x)dx)
Transform the expression
14×tan(x)4(12×tan(x)21tdt)
Use properties of integrals
14×tan(x)4(12×tan(x)2+1tdt)
Evaluate the integral
14×tan(x)4(12×tan(x)2+ln(|t|))
Substitute back
14×tan(x)4(12×tan(x)2+ln(|cos(x)|))
Simplify
tan(x)44tan(x)22ln(|cos(x)|)
Add C
Solution
tan(x)44tan(x)22ln(|cos(x)|)+C
karton

karton

Expert2022-01-04Added 613 answers

tan5(x)dx=(tan2(x))2tan(x)dx=(sec2(x)1)2tan(x)dx=(u21)2udu=(u32u+1u)du=u3du2udu+1uduu3du=u44udu=u221udu=ln(u)u3du2udu+1udu=ln(u)+u44u2=ln(sec(x))+sec4(x)4sec2(x)tan5(x)dx=ln(|sec(x)|)+sec4(x)4sec2(x)+C

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?