lugreget9

## Answered question

2021-12-30

Evaluate the indefinite integral.
$\int \mathrm{cos}x\left(3\mathrm{sin}x-1\right)dx$

### Answer & Explanation

scomparve5j

Beginner2021-12-31Added 38 answers

Step 1
Consider the provided integral,
$\int \mathrm{cos}x\left(3\mathrm{sin}x-1\right)dx$
Evaluate the indefinite integral.
Apply the substitution method,
Let, $u=3\mathrm{sin}x-1⇒du=3\mathrm{cos}xdx$.
Step 2
Therefore the integral becomes,
$\int \mathrm{cos}x\left(3\mathrm{sin}x-1\right)dx=\int \frac{u}{3}du$
$=\frac{1}{3}\cdot \int udu$
$=\frac{1}{3}\cdot \frac{{u}^{1+1}}{1+1}+C$
$=\frac{{u}^{2}}{6}+C$
Step 3
Substitute back $u=3\mathrm{sin}x-1$ in the above integral,
$\int \mathrm{cos}x\left(3\mathrm{sin}x-1\right)dx=\frac{1}{6}{\left(3\mathrm{sin}\left(x\right)-1\right)}^{2}+C$
Hence.

Cheryl King

Beginner2022-01-01Added 36 answers

$\int \mathrm{cos}\left(x\right)\left(3\mathrm{sin}\left(x\right)-1\right)dx$
$=\frac{1}{3}\int udu$
$\int udu$
$=\frac{{u}^{2}}{2}$
$\frac{1}{3}\int udu$
$=\frac{{u}^{2}}{6}$
$=\frac{{\left(3\mathrm{sin}\left(x\right)-1\right)}^{2}}{6}$
$\int \mathrm{cos}\left(x\right)\left(3\mathrm{sin}\left(x\right)-1\right)dx$
$=\frac{{\left(3\mathrm{sin}\left(x\right)-1\right)}^{2}}{6}+C$

karton

Expert2022-01-04Added 613 answers

$\int \mathrm{cos}\left(x\right)×\left(3\mathrm{sin}\left(x\right)-1\right)dx$
Remove the parentheses
$\int 3\mathrm{cos}\left(x\right)\mathrm{sin}\left(x\right)-\mathrm{cos}\left(x\right)dx$
Simplify the expression
$\int \frac{3}{2}×\mathrm{sin}\left(2x\right)-\mathrm{cos}\left(x\right)dx$
Calculate
$\int \frac{3\mathrm{sin}\left(2x\right)}{2}-\mathrm{cos}\left(x\right)dx$
Use properties of integrals
$\int \frac{3\mathrm{sin}\left(2x\right)}{2}dx-\int \mathrm{cos}\left(x\right)dx$
Evaluate the integrals
$-\frac{3\mathrm{cos}\left(2x\right)}{4}-\mathrm{sin}\left(x\right)$
Add C
Solution
$-\frac{3\mathrm{cos}\left(2x\right)}{4}-\mathrm{sin}\left(x\right)+C$

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?