Evaluate the following integral. \int (5\cos x-4\sin x)dx

Patricia Crane

Patricia Crane

Answered question

2021-12-29

Evaluate the following integral.
(5cosx4sinx)dx

Answer & Explanation

Stella Calderon

Stella Calderon

Beginner2021-12-30Added 35 answers

Step 1
Given:
(5cosx4sinx) dx ,
To ascertain: The integral value of a given value
Step 2
Explanation:
Evaluating the given integral,
(5cosx4sinx) dx ,
=5cosx dx 4sinx dx 
[since (f(x)+g(x)) dx =f(x) dx +g(x) dx ]
=5cosx dx 4sinx dx  [since 5f(x) dx =5f(x) dx ]
=5sinx+4cosx+C
[since sinx dx =cosx &cosx dx =sinx]
Where C is integration constant.
Therefore final result: (5cosx4sinx) dx =5sinx+4cosx+C.

Kayla Kline

Kayla Kline

Beginner2021-12-31Added 37 answers

(5cos(x)4sin(x))dx
Lets
karton

karton

Expert2022-01-04Added 613 answers

5cos(x)4sin(x)dx
Use properties of integrals
5cos(x)dx4sin(x)dx
Evaluate the integrals
5sin(x)+4cos(x)
Add CR
Answer:
5sin(x)+4cos(x)+C,CR

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?