prsategazd

## Answered question

2021-12-28

Evaluate the following integrals. Include absolute values only when needed.
${\int }_{0}^{3}\frac{2x-1}{x+1}dx$

### Answer & Explanation

Thomas Lynn

Beginner2021-12-29Added 28 answers

Step 1:To determine
Evaluate:
${\int }_{0}^{3}\frac{2x-1}{x+1}dx$
Step 2:Calculation
Consider the given integral:
${\int }_{0}^{3}\frac{2x-1}{x+1}dx$
Let $x+1=u⇒dx=du$
Also, when $x=0⇒u=1$ & when $x=3⇒u=4$
So, the integral becomes:
${\int }_{1}^{4}\frac{2\left(u-1\right)-1}{u}du$
$⇒{\int }_{1}^{4}\frac{2u-3}{u}du$
$⇒{\int }_{1}^{4}\frac{2u}{u}-\frac{3}{u}du$
$⇒{\int }_{1}^{4}2-\frac{3}{u}du$
$=2u-3\mathrm{ln}\left(u\right){\mid }_{1}^{4}$
$=2\left(4\right)-3\mathrm{ln}\left(4\right)-2\left(1\right)+3\mathrm{ln}\left(1\right)$
$⇒8-3\mathrm{ln}\left(4\right)-2+3\left(0\right)$
$⇒6-3\mathrm{ln}\left({2}^{2}\right)$
$⇒6-6\mathrm{ln}\left(2\right)$
Hence, ${\int }_{0}^{3}\frac{2x-1}{x+1}dx=6-6\mathrm{ln}\left(2\right)$

zurilomk4

Beginner2021-12-30Added 35 answers

$\int \frac{2x-1}{x+1}dx$
Substitution $u=x+1⇒\frac{du}{dx}=1⇒dx=du$:
$=\int \frac{2u-3}{u}du$
We use the distributive property:
$=\int \left(2-\frac{3}{u}\right)du$
Lets

karton

Expert2022-01-04Added 613 answers

$\begin{array}{}{\int }_{0}^{3}\frac{2x-1}{x+1}dx\\ \int \frac{2x-1}{x+1}dx\\ \int \frac{2t-3}{t}dt\\ \int \frac{2t}{t}-\frac{3}{t}dt\\ \int 2-\frac{3}{t}dt\\ \int 2dt-\int \frac{3}{t}dt\\ 2t-3\mathrm{ln}\left(|t|\right)\\ 2\left(x+1\right)-3\mathrm{ln}\left(|x+1|\right)\\ 2x=2-3\mathrm{ln}\left(|x+1|\right)\\ 2x+2-3\mathrm{ln}\left(|x+1|\right)\\ \left(2x+2-3\mathrm{ln}\left(|x+1|\right)\right){|}_{0}^{3}\\ 2×3+2-3\mathrm{ln}\left(|3+1|\right)-\left(2×0+2-3\mathrm{ln}\left(|0+1|\right)\right)\end{array}$
Simplify
$6-6\mathrm{ln}\left(2\right)$

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?