Evaluate the integral. \int \frac{\sec 2x}{\csc 2x}dx

hunterofdeath63

hunterofdeath63

Answered question

2021-12-26

Evaluate the integral.
sec2xcsc2xdx

Answer & Explanation

Corgnatiui

Corgnatiui

Beginner2021-12-27Added 35 answers

Step 1
Solution:
Consider the given integral:
I=sec2xcsc2xdx
Now, rewrite the integral:
I=1cos2xsin2x1dx
I=sin2xcos2xdx
Let u=cos2x
du=2sin2xdx
sin2xdx=du2
Step 2
Therefore,
I=du2u
I=12duu=12ln|u|
I=12ln|cos2x|+C
This is the required result, where C is the constant of integration.
Esther Phillips

Esther Phillips

Beginner2021-12-28Added 34 answers

sec(2x)csc(2x)dx
=12sec(u)csc(u)du
sec(u)csc(u)du
=sin(u)cos(u)du
=1vdv
1vdv
=ln(v)
1vdv
=ln(v)
=ln(cos(u))
12sec(u)csc(u)du
=ln(cos(u))2
=ln(cos(2x))2
sec(2x)csc(2x)dx
=ln(|cos(2x)|)2+C
karton

karton

Expert2022-01-04Added 613 answers

sec(2x)csc(2x)dx
1cos(2x)1sin(2x)dx
sin(2x)cos(2x)dx
12tdt
12×1tdt
12×ln(|t|)
12×ln(|cos(2x)|)
Add C
Answer:
12×ln(|cos(2x)|)+C

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?