Joan Thompson

## Answered question

2021-12-29

Use Table of Integrals to evaluate the integral. ${x}^{3}\mathrm{sin}\left({x}^{2}+10\right)dx$.

### Answer & Explanation

Cheryl King

Beginner2021-12-30Added 36 answers

$\int {x}^{3}\mathrm{sin}\left({x}^{2}+10\right)dx$
Let ${x}^{2}+10=t$
2xdx=dt
$\frac{1}{2}\int \left(t-10\right)\mathrm{sin}tdt$
$=\frac{1}{2}\left[\int t\cdot \mathrm{sin}tdt-10\int \mathrm{sin}tdt\right]$
$=\frac{1}{2}\left[\left(\mathrm{sin}t-t\mathrm{cos}t+c\right)-10\left(-\mathrm{cos}t\right)\right]$
$=\frac{1}{2}\left[\mathrm{sin}t-t\mathrm{cos}t+10\mathrm{cos}t\right]+C$
$=\frac{1}{2}\left[\mathrm{sin}\left({x}^{2}+10\right)+10\mathrm{cos}\left({x}^{2}+10\right)-\left({x}^{2}+10\right)\mathrm{cos}\left({x}^{2}+10\right)\right]+C$

hysgubwyri3

Beginner2021-12-31Added 43 answers

Let's place the expression 2 * x under the differential's sign, i.e.

The initial integral can then be expressed as follows: The

formula for integration by parts:
$\int U\left(x\right)\cdot dV\left(x\right)=U\left(x\right)\cdot V\left(x\right)-\int V\left(x\right)\cdot dU\left(x\right)$
Put
U=x

Then:
dU=dx
$V=-\frac{\mathrm{cos}\left(x+10\right)}{2}$
Thus:

Find the integral

Result:
$x\cdot \frac{\mathrm{sin}\left(x+10\right)}{2}=-\frac{x\cdot \mathrm{cos}\left(x+10\right)}{2}+\frac{\mathrm{sin}\left(x+10\right)}{2}+C$
To write down the final answer, it remains to substitute ${x}^{2}$ instead of t.
$-{x}^{2}\cdot \frac{\mathrm{cos}\left({x}^{2}+10\right)}{2}+\frac{\mathrm{sin}\left({x}^{2}+10\right)}{2}+C$

Vasquez

Expert2022-01-07Added 669 answers

$\begin{array}{}\int {x}^{3}×\mathrm{sin}\left({x}^{2}+10\right)dx\\ \int \frac{t×\mathrm{sin}\left(t\right)-10\mathrm{sin}\left(t\right)}{2}dt\\ \frac{1}{2}×\int t×\mathrm{sin}\left(t\right)-10\mathrm{sin}\left(t\right)dt\\ \frac{1}{2}×\left(\int t×\mathrm{sin}\left(t\right)dt-\int 10\mathrm{sin}\left(t\right)dt\right)\\ \frac{1}{2}×\left(-t×\mathrm{cos}\left(t\right)+\mathrm{sin}\left(t\right)+10\mathrm{cos}\left(t\right)\right)\\ \frac{1}{2}×\left(-\left({x}^{2}+10\right)×\mathrm{cos}\left({x}^{2}+10\right)+\mathrm{sin}\left({x}^{2}+10\right)+10\mathrm{cos}\left({x}^{2}+10\right)\right)\\ \frac{\mathrm{cos}\left({x}^{2}+10\right)×\left(-{x}^{2}-10\right)+\mathrm{sin}\left({x}^{2}+10\right)}{2}+5\mathrm{cos}\left({x}^{2}+10\right)\\ Solution:\\ \frac{\mathrm{cos}\left({x}^{2}+10\right)×\left(-{x}^{2}-10\right)+\mathrm{sin}\left({x}^{2}+10\right)}{2}+5\mathrm{cos}\left({x}^{2}+10\right)+C\end{array}$

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?