David Troyer

## Answered question

2021-12-30

Calculate the integral.
${\int }_{0}^{6}|3-x|dx$

### Answer & Explanation

Archie Jones

Beginner2021-12-31Added 34 answers

Step 1
Given: $I={\int }_{0}^{6}|3-x|dx$
for evaluating given integral, we break in two parts and integrate it
Step 2
so,
$I={\int }_{0}^{6}|3-x|dx$
$={\int }_{0}^{3}\left(3-x\right)dx+{\int }_{3}^{6}\left(x-3\right)dx$
$\left(\because \int \left(x-a\right)dx=\frac{{\left(x-a\right)}^{2}}{2}+c\right)$
$=-\frac{1}{2}{\left[{\left(x-3\right)}^{2}\right]}_{0}^{3}+\frac{1}{2}{\left[{\left(x-3\right)}^{2}\right]}_{3}^{6}$
$=-\frac{1}{2}\left[{\left(3-3\right)}^{2}-{\left(0-3\right)}^{2}\right]+\frac{1}{2}\left[{\left(6-3\right)}^{2}-{\left(3-3\right)}^{2}\right]$
$=-\frac{1}{2}\left[0-9\right]+\frac{1}{2}\left[9-0\right]$
$=\frac{9}{2}+\frac{9}{2}$
=9
hence, given integral is equal to 9.

Ana Robertson

Beginner2022-01-01Added 26 answers

Step 1
Given:
${\int }_{0}^{6}|3-x|dx$
Step 2
Solution
${\int }_{0}^{3}3-xdx+{\int }_{3}^{6}-\left(3-x\right)dx$
Evaluate the integrals
$\frac{9}{2}+\frac{9}{2}$
Calculate the sum
Step 3
Answer:
9

Vasquez

Expert2022-01-07Added 669 answers

$\int \left(3-x\right)dx$
$\int \left(3-x\right)dx=-\frac{{x}^{2}}{2}+3x$
Let's calculate a definite integral:
${\int }_{0}^{6}3-xdx=\left(-\frac{{x}^{2}}{2}+3x\right){|}_{0}^{6}$
F(6)=0
F(0)=0
I=6-(0)=6
Answer:
6

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?