Use the methods introduced evaluate the following integrals. \int x^{2}\cos xdx

Alfred Martin

Alfred Martin

Answered question

2022-01-02

Use the methods introduced evaluate the following integrals.
x2cosxdx

Answer & Explanation

MoxboasteBots5h

MoxboasteBots5h

Beginner2022-01-03Added 35 answers

Step 1
Given the integral x2cosxdx.
We need to evaluate the above integral.
Step 2
Let I=(x2cosx)dx
We need to integrate the above integral using integrating by parts.
u=x2 and v=cosx
So (uv)dx=uvdx[uvdx]
I=x2sinx2xsinxdx
I=x2sinx2(xsinx)dx
where
(x sinx)dx=x(cosx)1(cosx)dx
=xcosx+cosxdx
=xcosx+sinx
I=x2sinx2[xcosx+sinx]+C
I=x2sinx+2xcosx2sinx+C
Mary Herrera

Mary Herrera

Beginner2022-01-04Added 37 answers

x2cos(x)dx
Prepare for integration by parts
u=x2
dv=cos(x)dx
Calculate the differential
du=2xdx
v=sin(x)
Substitute the values into the formula
x2sin(x)sin(x)2xdx
x2sin(x)2sin(x)xdx
x2sin(x)2xsin(x)dx
Use the partial integration
x2sin(x)2(x(cos(x))cos(x)dx)
x2sin(x)2(x(cos(x))+cos(x)dx)
x2sin(x)2(x(cos(x))+sin(x))
Simplify
x2sin(x)+2xcos(x)2sin(x)
Answer:
x2sin(x)+2xcos(x)2sin(x)+C
Vasquez

Vasquez

Expert2022-01-07Added 669 answers

x2cos(x)dxIntegration formula by parts:U(x)dV(x)=U(x)V(x)V(x)dU(x)PutU=x2dV=cos(x)dxThen:dU=2xdxV=sin(x)Therefore:x2cos(x)dx=x2sin(x)2xsin(x)dxFind the integral2xsin(x)dxU=xdU=dxdV=2sin(x)dxV=2cos(x)2xsin(x)dx=2xcos(x)dx=2xcos(x)+2cos(x)dxFind the integral2cos(x)dx=2sin(x)Answer:x2cos(x)=x2sin(x)+2xcos(x)2sin(x)+C

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?