Gregory Jones

Answered question

2022-01-03

Evaluate the following integrals.
$\int \frac{81}{{x}^{3}-9{x}^{2}}dx$

Answer & Explanation

Joseph Fair

Beginner2022-01-04Added 34 answers

Step 1
Given: $I=\int \frac{81}{{x}^{3}-9{x}^{2}}dx$
for evaluating given integral, we first simplify it then integrate is
so,
$\int \frac{81dx}{{x}^{3}-9{x}^{2}}=81\int \frac{dx}{{x}^{2}\left(x-9\right)}$
$=81\int \left[-\frac{1}{81x}-\frac{1}{9{x}^{2}}+\frac{1}{81\left(x-9\right)}\right]dx$
$=81\left[-\frac{1}{81}\mathrm{ln}|x|+\frac{1}{9x}+\frac{1}{81}\mathrm{ln}|x-9|\right]+c$
$\left(\because \int \frac{dx}{x-a}=\mathrm{ln}|x-a|+c,\int {x}^{n}dx=\frac{{x}^{n+1}}{n+1}+c$
$=-\mathrm{ln}|x|+\frac{9}{x}+\mathrm{ln}|x-9|+c\right)$
Step 2
hence, given integral is $\mathrm{ln}|x-9|-\mathrm{ln}|x|+\frac{9}{x}+c$.

redhotdevil13l3

Beginner2022-01-05Added 30 answers

$\int \frac{81}{{x}^{3}-9{x}^{2}}dx$
$81\cdot \int \frac{1}{{x}^{3}-9{x}^{2}}dx$
$81\cdot \int -\frac{1}{81x}-\frac{1}{9{x}^{2}}+\frac{1}{81\left(x-9\right)}dx$
$81\left(-\int \frac{1}{81x}dx-\int \frac{1}{9{x}^{2}}+\frac{1}{81\left(x-9\right)}\right)dx$
$81\left(-\frac{1}{81}\cdot \mathrm{ln}\left(|x|\right)+\frac{1}{9x}+\frac{1}{81}\cdot \mathrm{ln}\left(|x-9|\right)\right)$
$-\mathrm{ln}\left(|x|\right)+\frac{9}{x}+\mathrm{ln}\left(|x-9|\right)$
Solution:
$-\mathrm{ln}\left(|x|\right)+\frac{9}{x}+\mathrm{ln}\left(|x-9|\right)+C$

Vasquez

Expert2022-01-07Added 669 answers

$\int \frac{81}{{x}^{3}-9\ast {x}^{2}}dx$
Let's represent it in the form:
$\frac{81}{{x}^{2}\ast \left(x-9\right)}=\frac{81}{{x}^{2}\ast \left(x-9\right)}$
We use the method of decomposition into the elementary elements. Let us expand the function into the simplest terms:
$\frac{81}{{x}^{2}\left(x-9\right)}=\frac{A}{x}+\frac{B}{{x}^{2}}+\frac{C}{x-9}=\frac{Ax\left(x-9\right)+B\left(x-9\right)+C{x}^{2}}{{x}^{2}\left(x-9\right)}$
$81=Ax\left(x-9\right)+B\left(x-9\right)+C{x}^{2}$
${x}^{2}:A+C=0$
x:-9A+B=0
1: -9B=81
Solving it, we find:
A=-1; B=-9; C=1
$\frac{81}{{x}^{2}\left(x-9\right)}=\frac{-1}{x}+\frac{-9}{{x}^{2}}+\frac{1}{x-9}$
We calculate the tabular integral: We
$\int \frac{1}{x-9}dx=\mathrm{ln}\left(x-9\right)$
calculate the tabular integral: We
$-\int \frac{1}{x}dx=-\mathrm{ln}\left(x\right)$
calculate the tabular integral:
$\int -\frac{9}{{x}^{2}}dx=\frac{9}{x}$
Answer:
$\mathrm{ln}\left(x-9\right)-\mathrm{ln}\left(x\right)+\frac{9}{x}+C$

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?