Use partial fractions to find the indefinite integral. \int \frac{x^{2}+12x+12}{x^{3}-4x}dx

piarepm

piarepm

Answered question

2022-01-07

Use partial fractions to find the indefinite integral.
x2+12x+12x34xdx

Answer & Explanation

Bob Huerta

Bob Huerta

Beginner2022-01-08Added 41 answers

Step 1
Given: I=x2+12x+12x34xdx
For evaluating given integral, first we simplify given expression then integrate it
Step 2
So,
I=x2+12x+12x34xdx
=x3+12x+12x(x24)dx
=x3+12x+12x(x222)dx   (a2b2=(a+b)(ab))
=x2+12x+12x(x+2)(x2)dx
=(5x23x1x+2)dx   (dxx+a=ln|x+a|+c)
=5ln|x2|3ln|x|ln|x+2|+c
Hence, given integral can be find as above.
poleglit3

poleglit3

Beginner2022-01-09Added 32 answers

x2+12x+12x34xdx
x2+12x+12x34x=Ax+Bx2+Cx+2
x2+12x+12=A(x24)+B×(x+2)+C×(x2)
put x=0
12=A(4)+B×0+C×0
A=3
put x=2
4+24+12=B2(2+2)
40=B×8
B=5
put x=2,(2)2+12(2)+12=A((2)24)+B(2)(22)+C(2)(22)
424+12=8C
8=8CC=1
x2+12x+12x34x=5x21x+23x
x2+12x+12x34xdx=5dxx2dxx+23dxx
=5ln(x2)ln(x+2)3lnx+C
=ln(x2)5x3(x+2)+C

karton

karton

Expert2022-01-11Added 613 answers

Given:
x2+12x+12x34xdx3x+5x21x+2dx3xdx+5x2dx1x+2dx3ln(|x|)+5ln(|x2|)ln(|x+2|)Answer:3ln(|x|)+5ln(|x2|)ln(|x+2|)+C

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?