Solve \(\displaystyle{x}^{{{3}}}{\left\lbrace{y}\right\rbrace}{'''}+{x}{\left\lbrace{y}\right\rbrace}'-{y}={x}{\ln{{\left({x}\right)}}}\) using shift \(\displaystyle{x}={e}^{{{z}}}\) and differential

juctommaccedo662f

juctommaccedo662f

Answered question

2022-03-20

Solve x3{y} +x{y}y=xln(x)
using shift x=ez and differential operator Dz=d dz .
What does Dz=d dz  mean?
(ez)3{y} '''+ez{y}'y=ezln(ez)

(e3z){y}'''+ez{y}'y=ez{z}
y=zr
e3r(r2r2)zr3+ezrzr1zr=0
Continue ?

Answer & Explanation

Karsyn Wu

Karsyn Wu

Beginner2022-03-21Added 17 answers

Explanation: Step 1
Let Y(z)=y(x)=y(ez). Then Chain Rule and Product Rule give
dYdz =dydxdxdz=dydxez=xdydxd2Ydz2 =ddz(dydxez)=dydxez+d2ydx2ezez=dydxez+d2ydx2e2z=dYdz+x2d2ydx2d3Ydz3 =ddz(dYdz+d2ydx2e2z)=d2Ydz2+2d2ydx2e2z+d3ydx3e3z  =d2Ydz2+2x2d2ydx2+x3d3ydx3=d2Ydz2+2(d2Ydz2dYdz)+x3d3ydx3  =3d2Ydz22dYdz+x3d3ydx3.
Step 2
Thus, the original DE transforms to

x 3 y + x y y = x ln x Y 3 Y + 2 Y + Y Y = e z z Y 3 Y + 3 Y Y = z e z .
Endstufe5qa2

Endstufe5qa2

Beginner2022-03-22Added 7 answers

Step 1
Treating the homogeneous equation as Euler-Cauchy equation, that is, trying y=xr, gives the equation
0=r(r1)(r2)+r1=r33r+3r1=(r1)3,
so that the basis solutions are y=x,x=ln(x)x,y=ln(x)2x.
Step 2
The right side is in resonance of degree 2, thus the particular solution has the form
yp(x)=ln(x)3(A+Bln(x))x.

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?