f(x,y)=x^3+y^2x-3 find dy/dx

Answered question

2022-04-06

f(x,y)=x^3+y^2x-3 find dy/dx

Answer & Explanation

nick1337

nick1337

Expert2022-04-19Added 777 answers

Differentiate both sides of the equation.

ddx(f(x,y))=ddx(x3+y2x-3)

Since f is constant with respect to x, the derivative of f(x,y) with respect to x is fddx[(x,y)].

fddx[(x,y)]

Differentiate the right side of the equation.

3x2+ddx[y2x]+ddx[-3]

Evaluate ddx[y2x].

3x2+y2+2xyy+ddx[-3]

Since -3 is constant with respect to x, the derivative of -3 with respect to x is 0.

3x2+y2+2xyy+0

Add 3x2+y2+2xyy and 0.

3x2+y2+2xyy

Reform the equation by setting the left side equal to the right side.

fddx((x,y))=3x2+y2+2xyy

Solve for y.

Rewrite the equation as 3x2+y2+2xyy=fddx((x,y)).

3x2+y2+2xyy=fddx((x,y))

Cancel the common factor of d.

3x2+y2+2xyy=fx((x,y))

Move all terms not containing y to the right side of the equation.

2xyy=fx((x,y))-3x2-y2

Divide each term in 2xyy=fx((x,y))-3x2-y2 by 2xy and simplify.

y=f2x2y(x,y)-3x2y-y2x

Replace y with dydx.

dydx=f2x2y(x,y)3x2yy2x

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?