How can I handle exp(ln|x|) to solve 1st order linear

Magdalena Norton

Magdalena Norton

Answered question

2022-04-25

How can I handle exp(ln|x|) to solve 1st order linear DE?
RHS and LHS are same.
exp(ln(x))=exp(ln(x))     (1)
Taking log.
ln(exp(ln(x)))=ln(exp(ln(x)))     (2)
ln(x)=ln(exp(ln(x)))     (3)
∴≈x=exp(ln(x))     (4)
Then what about ln|x| ?
This problem is a sub-problem of below ODE.
dydx-2xy=x6     (5)
My thoughts are as below.
P(x) =2x     (6)
Q(x) =x6     (7)
dydx+P(x)y=Q(x)1st order linear DE     (8)
Integrating factor=exp(P(x)dx)     (9)
exp(-2xdx)     (10)
=exp(21xdx)     (11)
=exp(-2lnx+const)     (12)
=exp(-2lnx)exp(const)     (13)
=exp(lnx)-2exp(const)     (14)
exp(lnx)=exp(lnx)     (15)
I got the following general solution as I forcefully assumed
~ x=exp(lnx) ~
y=15x7+const1x2     (16)

Answer & Explanation

catcher1307ieh

catcher1307ieh

Beginner2022-04-26Added 15 answers

Explanation:
exp(ln|x|)2    (1)
=1exp(ln|x|)2    (2)
=1exp(2ln|x|)    (3)
=1exp(ln(|x|2))    (4)
=1exp(ln(x2))    (5)
=1exp(2ln(x))    (6)
=1exp(ln(x))2    (7)
=1(x)2    (8)

pecanjima9vo

pecanjima9vo

Beginner2022-04-27Added 11 answers

Firstly, on your equations for exp and ln,
x=exp[ln(x)]
only holds for x>0. Secondly, the integrating factor for the equation
y(x)2xy(x)=x6
is given by the function
μ(x)={C0exp[2ln(x)]x<0C1exp[2ln(x)]x>0={C0x2x<0C1x2x>0
with C0,C1>0. What this means is that if
f(x)=1x2,
then (fy)(x)=f(x)x6=x4.
Since 0 is a singularity, we have that
f(x)y(x)=x55+C0=y(x)x2      x<0
f(x)y(x)=x55+C1=y(x)x2      x>0.
What this implies is that
y(x)={x75+C0x<0x75+C1x>0.

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?