Solve x^{3}{y}'''+x{y}'-y = x\ln(x) using shift x=e^{z} and differential operator Dz=\frac{d}{dz}. What

Terrence Moore

Terrence Moore

Answered question

2022-04-27

Solve x3y'''+xy'-y=xln(x)
using shift x=ez and differential operator Dz=d dz .
What does Dz=d dz  mean?
(ez)3y'''+ezy'-y=ezln(ez)

(e3z)y'''+ezy'-y=ezz
y=zr
e3r(r2r2)zr3+ezrzr1zr=0
Continue ?

Answer & Explanation

Pedro Taylor

Pedro Taylor

Beginner2022-04-28Added 19 answers

Explanation: Step 1
Let Y(z)=y(x)=y(ez). Then Chain Rule and Product Rule give
dYdz =dydxdxdz=dydxez=xdydxd2Ydz2 =ddz(dydxez)=dydxez+d2ydx2ezez=dydxez+d2ydx2e2z=dYdz+x2d2ydx2d3Ydz3 =ddz(dYdz+d2ydx2e2z)=d2Ydz2+2d2ydx2e2z+d3ydx3e3z  =d2Ydz2+2x2d2ydx2+x3d3ydx3=d2Ydz2+2(d2Ydz2dYdz)+x3d3ydx3  =3d2Ydz22dYdz+x3d3ydx3.
Step 2
Thus, the original DE transforms to
x3y'''+xy'y=xlnxY'''3Y''+2Y'+Y'Y=ezzY'''3Y''+3Y'Y=zez.

Barbara Navarro

Barbara Navarro

Beginner2022-04-29Added 18 answers

Step 1
Treating the homogeneous equation as Euler-Cauchy equation, that is, trying y=xr, gives the equation
0=r(r1)(r2)+r1=r33r+3r1=(r1)3,
so that the basis solutions are y=x,x=ln(x)x,y=ln(x)2x.
Step 2
The right side is in resonance of degree 2, thus the particular solution has the form
yp(x)=ln(x)3(A+Bln(x))x.

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?