How do you integrate <mstyle displaystyle="true" scriptlevel="0"> 1

tinydancer27br

tinydancer27br

Answered question

2022-05-22

How do you integrate 1 ( 1 + cos x ) ( 1 + sin x )

Answer & Explanation

vard6vv

vard6vv

Beginner2022-05-23Added 12 answers

Let
I = 1 ( 1 + sin x ) ( 1 + cos x ) d x = 1 2 1 ( sin x 2 + cos x 2 ) 2 cos 2 x 2 d x
Above we used
1 + sin x = sin 2 x 2 + cos 2 x 2 + 2 sin x 2 cos x 2
And
1 + cos x = 2 cos 2 x 2 .
So we get
I = 1 2 sec 2 x 2 ( sin x 2 + cos x 2 ) 2 d x = 1 2 sec 2 x 2 ( 1 + tan 2 x 2 ) ( tan x 2 + 1 ) 2
Now Put tan x 2 = t , , Then 1 2 sec 2 x 2 d x = d t
So we get
I = 1 + t 2 ( 1 + t ) 2 d x = 1 + t 2 + 2 t 2 t ( 1 + t ) 2 d t = 1 d t 2 t ( 1 + t ) 2 d t
Now ( 1 + t ) = u ,, Then d t = d u
So we get
I = t 2 u 1 u 2 d u = t 2 ln | u | 2 u + C
So we get
I = t 2 ln | 1 + t | 2 1 + t + C
So we get
I = tan x 2 2 ln | 1 + tan x 2 | 2 1 + tan x 2 + C
Bailee Landry

Bailee Landry

Beginner2022-05-24Added 3 answers

HINT:
1 ( 1 + cos x ) ( 1 + sin x ) = ( 1 sin x ) ( 1 cos x ) cos 2 x sin 2 x
= sec 2 x csc 2 x + 2 csc 2 x sin x + cos x cos 2 x sin 2 x
Now, sec 2 x csc 2 x = sec 2 x + csc 2 x
For sin x cos 2 x sin 2 x d x = sin x cos 2 x ( 1 cos 2 x ) d x
set cos x = u
Similarly for cos x cos 2 x sin 2 x d x

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?