Calculate: <msubsup> &#x222B;<!-- ∫ --> <mrow class="MJX-TeXAtom-ORD"> 0

hoperetauyk

hoperetauyk

Answered question

2022-05-23

Calculate:
0 π cos ( x ) log ( sin 2 ( x ) + 1 ) d x

Answer & Explanation

sepolturamo

sepolturamo

Beginner2022-05-24Added 14 answers

Behold the power of symmetry:
cos ( π x ) = cos x and sin ( π x ) = sin x ,
therefore
0 π cos x log ( sin 2 x + 1 ) d x = 0 π cos ( π u ) log ( sin 2 ( π u ) + 1 ) d u = 0 π cos u log ( sin 2 u + 1 ) d u ,
hence the integral evaluates to 0.
raulgallerjv

raulgallerjv

Beginner2022-05-25Added 2 answers

cos x ln ( 1 + sin 2 x )   d x
= ln ( 1 + sin 2 x ) cos x   d x ( d   ln ( 1 + sin 2 x ) d x cos x   d x ) d x
= sin x ln ( 1 + sin 2 x ) 2 sin 2 x cos x 1 + sin 2 x d x
2 sin 2 x cos x 1 + sin 2 x d x = 2 ( 1 + sin 2 x 1 ) cos x 1 + sin 2 x d x = 2 cos x   d x 2 cos x 1 + sin 2 x d x
Set sinx=u for the last integral

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?