How to integrate tan &#x2061;<!-- ⁡ -->

gaiaecologicaq2

gaiaecologicaq2

Answered question

2022-07-14

How to integrate tan ( x ) tan ( 2 x ) tan ( 3 x )?

Answer & Explanation

Perman7z

Perman7z

Beginner2022-07-15Added 13 answers

Since
tan 3 x = tan ( x + 2 x ) = tan x + tan 2 x 1 tan x tan 2 x ,
we have
tan 3 x tan x tan 2 x tan 3 x = tan x + tan 2 x ,
i.e.
tan x tan 2 x tan 3 x = tan 3 x tan x tan 2 x .
For a 0 we have
tan ( a x ) d x = 1 a ln | cos ( a x ) | + c ,
and therefore
tan x tan 2 x tan 3 x d x = ( tan 3 x tan x tan 2 x ) d x = ln | cos x | + 1 2 ln | cos 2 x | 1 3 ln | cos 3 x | + c
orlovskihmw

orlovskihmw

Beginner2022-07-16Added 1 answers

In addition to the other answers, we can also do like this:
Use tan 3 x = 3 cos 2 x sin x sin 3 x cos 3 x 3 cos x sin 2 x , tan 2 x = 2 cos x sin x cos 2 x sin 2 x and substitute u = cos x to get
I = tan x tan 2 x tan 3 x d x = 2 ( 4 cos 4 x 5 cos 2 x + 1 ) cos x ( 2 cos 2 x 1 ) ( 4 cos 2 x 3 ) sin x d x = 2 4 u 4 5 u 2 + 1 u ( 2 u 2 1 ) ( 4 u 2 3 ) d u = 8 3 u 4 u 2 3 d u + 2 u 2 u 2 1 d u + 2 3 u d u

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?