Adrianna Macias

2022-07-18

I want to solve $dy/dx$ for the following:

${x}^{2}+{y}^{2}={R}^{2}$ where $R$ is a constant.

I know to use implicit differentiation, though I have a question. When I derive ${R}^{2}$, do I obtain $2R$ or 0?

Additionally, deriving ${y}^{2}$ with respect to x yields $2y(dy/dx)$? This is different from a partial derivative?

Thanks!

${x}^{2}+{y}^{2}={R}^{2}$ where $R$ is a constant.

I know to use implicit differentiation, though I have a question. When I derive ${R}^{2}$, do I obtain $2R$ or 0?

Additionally, deriving ${y}^{2}$ with respect to x yields $2y(dy/dx)$? This is different from a partial derivative?

Thanks!

bulgarum87

Beginner2022-07-19Added 15 answers

Suppose $R$ is a function of $x$ and $y$; then

$\begin{array}{}\text{(1)}& {x}^{2}+{y}^{2}={R}^{2}(x,y);\end{array}$

if we define

$\begin{array}{}\text{(2)}& F(x,y)={x}^{2}+{y}^{2}-{R}^{2}(x,y),\end{array}$

we may also write (1) as

$\begin{array}{}\text{(3)}& F(x,y)={x}^{2}+{y}^{2}-{R}^{2}(x,y)=0;\end{array}$

by the implicit funtion theorem, this equation in fact may be seen as defining $y(x)$, a function of $x$, provided that

$\begin{array}{}\text{(4)}& {\displaystyle \frac{\mathrm{\partial}F(x,y)}{\mathrm{\partial}y}}\ne 0;\end{array}$

we have

$\begin{array}{}\text{(5)}& {\displaystyle \frac{\mathrm{\partial}F(x,y)}{\mathrm{\partial}y}}=2y-2R(x,y){\displaystyle \frac{\mathrm{\partial}R(x,y)}{\mathrm{\partial}y}}\ne 0\end{array}$

provided

$\begin{array}{}\text{(6)}& y\ne R(x,y){\displaystyle \frac{\mathrm{\partial}R(x,y)}{\mathrm{\partial}y}};\end{array}$

under such circumstances, we may affirm $y(x)$ is uniquely determined as a differentiable function of $x$ in some neighborhood of any point $(x,y)$; then we have

$\begin{array}{}\text{(7)}& F(x,y)={x}^{2}+{y}^{2}(x)-{R}^{2}(x,y(x))=0;\end{array}$

we may take the total derivative with respect to x to obtain

$\begin{array}{}\text{(8)}& {\displaystyle \frac{dF(x,y)}{dx}}=2x+2y{\displaystyle \frac{dy(x)}{dx}}-2R(x,y(x))({\displaystyle \frac{\mathrm{\partial}R(x,y(x))}{\mathrm{\partial}x}}+{\displaystyle \frac{\mathrm{\partial}R(x,y(x))}{\mathrm{\partial}y}}{\displaystyle \frac{dy(x)}{dx}})=0;\end{array}$

a little algebra allows us to isolate the terms containing $dy(x)/dx$:

$\begin{array}{}\text{(9)}& x+y{\displaystyle \frac{dy(x)}{dx}}-R(x,y(x))({\displaystyle \frac{\mathrm{\partial}R(x,y(x))}{\mathrm{\partial}x}}+{\displaystyle \frac{\mathrm{\partial}R(x,y(x))}{\mathrm{\partial}y}}{\displaystyle \frac{dy(x)}{dx}})=0;\end{array}$

$\begin{array}{}\text{(10)}& y{\displaystyle \frac{dy(x)}{dx}}-R(x,y(x)){\displaystyle \frac{\mathrm{\partial}R(x,y(x))}{\mathrm{\partial}y}}{\displaystyle \frac{dy(x)}{dx}}=R(x,y(x)){\displaystyle \frac{\mathrm{\partial}R(x,y(x))}{\mathrm{\partial}x}}-x;\end{array}$

$\begin{array}{}\text{(11)}& (y-R(x,y(x)){\displaystyle \frac{\mathrm{\partial}R(x,y(x)}{\mathrm{\partial}y}}){\displaystyle \frac{dy(x)}{dx}}=R(x,y(x)){\displaystyle \frac{\mathrm{\partial}R(x,y(x))}{\mathrm{\partial}x}}-x;\end{array}$

for the sake of compactess and brevity, we introduce the subscript notation

$\begin{array}{}\text{(12)}& {R}_{x}={\displaystyle \frac{\mathrm{\partial}R}{\mathrm{\partial}x}},\phantom{\rule{thickmathspace}{0ex}}\text{etc.},\end{array}$

and write (11) in the form

$\begin{array}{}\text{(13)}& {y}^{\prime}(x)={\displaystyle \frac{R{R}_{x}-x}{y-R{R}_{y}}}=-{\displaystyle \frac{x-R{R}_{x}}{y-R{R}_{y}}},\end{array}$

which gives a general expression for ${y}^{\prime}(x)$; in the event that $R(x,y)$ is constant, we obtain

$\begin{array}{}\text{(14)}& {y}^{\prime}(x)=-{\displaystyle \frac{x}{y}},\end{array}$

which the reader may recognize as the slope of the circle

$\begin{array}{}\text{(15)}& {x}^{2}+{y}^{2}={R}^{2}\end{array}$

at any point $(x,y)$ where $y\ne 0$.

$\begin{array}{}\text{(1)}& {x}^{2}+{y}^{2}={R}^{2}(x,y);\end{array}$

if we define

$\begin{array}{}\text{(2)}& F(x,y)={x}^{2}+{y}^{2}-{R}^{2}(x,y),\end{array}$

we may also write (1) as

$\begin{array}{}\text{(3)}& F(x,y)={x}^{2}+{y}^{2}-{R}^{2}(x,y)=0;\end{array}$

by the implicit funtion theorem, this equation in fact may be seen as defining $y(x)$, a function of $x$, provided that

$\begin{array}{}\text{(4)}& {\displaystyle \frac{\mathrm{\partial}F(x,y)}{\mathrm{\partial}y}}\ne 0;\end{array}$

we have

$\begin{array}{}\text{(5)}& {\displaystyle \frac{\mathrm{\partial}F(x,y)}{\mathrm{\partial}y}}=2y-2R(x,y){\displaystyle \frac{\mathrm{\partial}R(x,y)}{\mathrm{\partial}y}}\ne 0\end{array}$

provided

$\begin{array}{}\text{(6)}& y\ne R(x,y){\displaystyle \frac{\mathrm{\partial}R(x,y)}{\mathrm{\partial}y}};\end{array}$

under such circumstances, we may affirm $y(x)$ is uniquely determined as a differentiable function of $x$ in some neighborhood of any point $(x,y)$; then we have

$\begin{array}{}\text{(7)}& F(x,y)={x}^{2}+{y}^{2}(x)-{R}^{2}(x,y(x))=0;\end{array}$

we may take the total derivative with respect to x to obtain

$\begin{array}{}\text{(8)}& {\displaystyle \frac{dF(x,y)}{dx}}=2x+2y{\displaystyle \frac{dy(x)}{dx}}-2R(x,y(x))({\displaystyle \frac{\mathrm{\partial}R(x,y(x))}{\mathrm{\partial}x}}+{\displaystyle \frac{\mathrm{\partial}R(x,y(x))}{\mathrm{\partial}y}}{\displaystyle \frac{dy(x)}{dx}})=0;\end{array}$

a little algebra allows us to isolate the terms containing $dy(x)/dx$:

$\begin{array}{}\text{(9)}& x+y{\displaystyle \frac{dy(x)}{dx}}-R(x,y(x))({\displaystyle \frac{\mathrm{\partial}R(x,y(x))}{\mathrm{\partial}x}}+{\displaystyle \frac{\mathrm{\partial}R(x,y(x))}{\mathrm{\partial}y}}{\displaystyle \frac{dy(x)}{dx}})=0;\end{array}$

$\begin{array}{}\text{(10)}& y{\displaystyle \frac{dy(x)}{dx}}-R(x,y(x)){\displaystyle \frac{\mathrm{\partial}R(x,y(x))}{\mathrm{\partial}y}}{\displaystyle \frac{dy(x)}{dx}}=R(x,y(x)){\displaystyle \frac{\mathrm{\partial}R(x,y(x))}{\mathrm{\partial}x}}-x;\end{array}$

$\begin{array}{}\text{(11)}& (y-R(x,y(x)){\displaystyle \frac{\mathrm{\partial}R(x,y(x)}{\mathrm{\partial}y}}){\displaystyle \frac{dy(x)}{dx}}=R(x,y(x)){\displaystyle \frac{\mathrm{\partial}R(x,y(x))}{\mathrm{\partial}x}}-x;\end{array}$

for the sake of compactess and brevity, we introduce the subscript notation

$\begin{array}{}\text{(12)}& {R}_{x}={\displaystyle \frac{\mathrm{\partial}R}{\mathrm{\partial}x}},\phantom{\rule{thickmathspace}{0ex}}\text{etc.},\end{array}$

and write (11) in the form

$\begin{array}{}\text{(13)}& {y}^{\prime}(x)={\displaystyle \frac{R{R}_{x}-x}{y-R{R}_{y}}}=-{\displaystyle \frac{x-R{R}_{x}}{y-R{R}_{y}}},\end{array}$

which gives a general expression for ${y}^{\prime}(x)$; in the event that $R(x,y)$ is constant, we obtain

$\begin{array}{}\text{(14)}& {y}^{\prime}(x)=-{\displaystyle \frac{x}{y}},\end{array}$

which the reader may recognize as the slope of the circle

$\begin{array}{}\text{(15)}& {x}^{2}+{y}^{2}={R}^{2}\end{array}$

at any point $(x,y)$ where $y\ne 0$.

Freddy Friedman

Beginner2022-07-20Added 5 answers

By the chaine rule you will get

$2x+2y\cdot {y}^{\prime}=0$

$2x+2y\cdot {y}^{\prime}=0$

What is the derivative of the work function?

How to use implicit differentiation to find $\frac{dy}{dx}$ given $3{x}^{2}+3{y}^{2}=2$?

How to differentiate $y=\mathrm{log}{x}^{2}$?

The solution of a differential equation y′′+3y′+2y=0 is of the form

A) ${c}_{1}{e}^{x}+{c}_{2}{e}^{2x}$

B) ${c}_{1}{e}^{-x}+{c}_{2}{e}^{3x}$

C) ${c}_{1}{e}^{-x}+{c}_{2}{e}^{-2x}$

D) ${c}_{1}{e}^{-2x}+{c}_{2}{2}^{-x}$How to find instantaneous velocity from a position vs. time graph?

How to implicitly differentiate $\sqrt{xy}=x-2y$?

What is 2xy differentiated implicitly?

How to find the sum of the infinite geometric series given $1+\frac{2}{3}+\frac{4}{9}+...$?

Look at this series: 1.5, 2.3, 3.1, 3.9, ... What number should come next?

A. 4.2

B. 4.4

C. 4.7

D. 5.1What is the derivative of $\frac{x+1}{y}$?

How to find the sum of the infinite geometric series 0.9 + 0.09 + 0.009 +…?

How to find the volume of a cone using an integral?

What is the surface area of the solid created by revolving $f\left(x\right)={e}^{2-x},x\in [1,2]$ around the x axis?

How to differentiate ${x}^{\frac{2}{3}}+{y}^{\frac{2}{3}}=4$?

The differential coefficient of $\mathrm{sec}\left({\mathrm{tan}}^{-1}\left(x\right)\right)$.