Tirimwb

2022-07-26

Differentiate.

$F(x)=\frac{1}{8x-5}$

$F(x)=\frac{1}{8x-5}$

Tolamaes04

Beginner2022-07-27Added 12 answers

$F(x)=\frac{1}{8x-5}$

If you bring 8x-5 up from the denominator you can then rewrite the F(x) as

$F(x)=(8x-5{)}^{-1}$, this will make it easier todifferentiate.

Now, use the general power rule which is $\frac{d}{dx}[{u}^{n}]=n{u}^{n-1}\ast {u}^{\prime}$

So, ${F}^{\prime}(x)=-1(8x-5{)}^{-2}\ast 8=-8(8x-5{)}^{-2}=\frac{-8}{(8x-5{)}^{2}}$

If you bring 8x-5 up from the denominator you can then rewrite the F(x) as

$F(x)=(8x-5{)}^{-1}$, this will make it easier todifferentiate.

Now, use the general power rule which is $\frac{d}{dx}[{u}^{n}]=n{u}^{n-1}\ast {u}^{\prime}$

So, ${F}^{\prime}(x)=-1(8x-5{)}^{-2}\ast 8=-8(8x-5{)}^{-2}=\frac{-8}{(8x-5{)}^{2}}$

What is the derivative of the work function?

How to use implicit differentiation to find $\frac{dy}{dx}$ given $3{x}^{2}+3{y}^{2}=2$?

How to differentiate $y=\mathrm{log}{x}^{2}$?

The solution of a differential equation y′′+3y′+2y=0 is of the form

A) ${c}_{1}{e}^{x}+{c}_{2}{e}^{2x}$

B) ${c}_{1}{e}^{-x}+{c}_{2}{e}^{3x}$

C) ${c}_{1}{e}^{-x}+{c}_{2}{e}^{-2x}$

D) ${c}_{1}{e}^{-2x}+{c}_{2}{2}^{-x}$How to find instantaneous velocity from a position vs. time graph?

How to implicitly differentiate $\sqrt{xy}=x-2y$?

What is 2xy differentiated implicitly?

How to find the sum of the infinite geometric series given $1+\frac{2}{3}+\frac{4}{9}+...$?

Look at this series: 1.5, 2.3, 3.1, 3.9, ... What number should come next?

A. 4.2

B. 4.4

C. 4.7

D. 5.1What is the derivative of $\frac{x+1}{y}$?

How to find the sum of the infinite geometric series 0.9 + 0.09 + 0.009 +…?

How to find the volume of a cone using an integral?

What is the surface area of the solid created by revolving $f\left(x\right)={e}^{2-x},x\in [1,2]$ around the x axis?

How to differentiate ${x}^{\frac{2}{3}}+{y}^{\frac{2}{3}}=4$?

The differential coefficient of $\mathrm{sec}\left({\mathrm{tan}}^{-1}\left(x\right)\right)$.