Find (dy)/(dx) by implicit differentiation. Note that y is a function of x. Given: e^(x/y)=x−y

empalhaviyt

empalhaviyt

Open question

2022-08-16

Find d y d x by implicit differentiation. Note that y is a function of x.
Given:
e x y = x y
My solution:
Take derivative of left-hand side
d y d x e x y = ( e x y ) ( y ( 1 ) ( 1 ) y x y 2 ) = ( e x y ) ( y y x y 2 )
Take derivative of right-hand side
d y d x ( x ) d y d x ( y ) = 1 1 ( y ) = 1 y
The expression is now
( e x y ) ( y y x y 2 ) = 1 y
Multiply both sides by y 2
e x y y y x = y 2 y y 2
Rearrange variables
y e x y y 2 = y x y y 2
Factor y
y e x y y 2 = y ( x y 2 )
Factor ( x y 2 ) out of right-hand side, divide on the left-hand side
y e x y y 2 ( x y 2 ) = y
The correct answer from the textbook is:
y 2 y e x y y 2 x e x y = y
Where did I go wrong? Thanks for your help.

Answer & Explanation

nedervdq3

nedervdq3

Beginner2022-08-17Added 13 answers

You have a mistake in the step "Multiply both sides by y 2 ". Note that
y 2 e x / y y x y y 2 = e x / y y e x / y x y
while you have written
e x y y y x .

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?