Suppose we have the equation V=1/3 pir^2h. Find dr/dh. [Chain Rule] We have dV/dh=dV/dr x dr/dh. {dV/dh=1/3 pir^2 dV/dr=2/3 pirh=>1/3 pir^2=2/3 pirh x dr/dh=>r=2h x dr/dh=>dr/dh=r/2h

Brynn Collins

Brynn Collins

Open question

2022-08-29

Suppose we have the equation V = 1 3 π r 2 h. Find d r d h .
[Chain Rule]
We have d V d h = d V d r d r d h
{ d V d h = 1 3 π r 2 d V d r = 2 3 π r h 1 3 π r 2 = 2 3 π r h d r d h r = 2 h d r d h d r d h = r 2 h
[Implicit Differentiation]
d d h V = π 3 d d h ( r 2 h ) 0 = π 3 ( r 2 d d h h + h d d h r 2 ) 0 = r 2 + 2 h r d r d h d r d h = r 2 2 h r = r 2 h
Why does the solution using the chain rule method have a different sign compablack to the one using implicit differentiation? Did I make any mistake?

Answer & Explanation

Arjun Wright

Arjun Wright

Beginner2022-08-30Added 8 answers

There's a few things going on here. It's important to distinguish between V(r,h) the function and V the constant.

First, your chain rule is wrong (for what you are asking). It should be:
d V d h = V ( r , h ) r d r d h + V ( r , h ) h d h d h
Notice that the left hand side is V the constant, which when you did implicit differentiation you set equal to zero. Then we have
d V d h = V ( r , h ) r d r d h + V ( r , h ) h d h d h 0 = ( 2 3 π r h ) d r d h + 1 3 π r 2 ( 1 ) d r d h = r 2 h
Now chain rule gives the same answer as implicit differentiation.

To give a bit more intuiton.

Your chain rule calculation that you originally had answeblack said "How much do I have to change r by to get the same volume change if I changed h?"
Your implicit differentiation question said "How much do I have to change r by to keep volume the same if I changed h?"
sveiparnu

sveiparnu

Beginner2022-08-31Added 5 answers

You are solving two different problems.

In your first part, you have V a function of h and r where r and h are both independent variables and V is the dependent variable. That means your
d r d h = 0
and
d h d r = 0
In your second part, you keep V constant in which case you have d V d h = 0.. and d V d r = 0. but you can solve for d h d r or d r d h

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?