I'm self studying How to Prove book and have been working out the following problem in which I have to analyze it to logical form: Nobody in the calculus class is smarter than everybody in the discrete math class

therightwomanwf

therightwomanwf

Answered question

2022-07-13

I'm self studying How to Prove book and have been working out the following problem in which I have to analyze it to logical form:
Nobody in the calculus class is smarter than everybody in the discrete math class
Now, this is how, I started solving it:
¬(Somebody in the calculus class is smarter than everybody in the discrete math class) ¬(If x is in calculus class then x is smartert than everybody in the discrete maths class)
C ( x ) = x is in calculus class. D ( y ) = y is in discrete class. S ( x , y ) = x is smarter than y
¬ x ( C ( x ) y ( D ( y ) S ( x , y ) ) )
But this is the solution given in the Velleman's book:
¬ x [ C ( x ) y ( D ( y ) S ( x , y ) ) ]
I cannot understand how that answer is correct. Can someone explain the thing I'm missing there ?

Answer & Explanation

Oliver Shepherd

Oliver Shepherd

Beginner2022-07-14Added 24 answers

Step 1
Your answer asserts that there does not exist anyone x, who, iF x is in Calculus, then (all students y are both in Discrete math and x is smarter than them.) This is clearly not what is conveyed in the original statement.
Step 2
What we need, essentially, is "There does not exist someone x who is enrolled in Calculus AND such that, for all students y, if y is enrolled in Discrete math, then x is smarter than y.
¬ x ( C ( x ) y ( D ( x ) S ( x , y ) ) )
uplakanimkk

uplakanimkk

Beginner2022-07-15Added 6 answers

Step 1
Let C denote the set of members of calculus class and let D the set of members of discrete math class.
The following statements are equivalent (explore step by step) and the last one is the Velleman answer:
Step 2
1) Nobody in the calculus class is smarter than everybody in the discrete math class
2) For every person x in C there is a person y in D such that ¬ S ( x , y )
3) x C y D [ ¬ S ( x , y ) ]
4) x [ x C y [ y D ¬ S ( x , y ) ] ]
5) ¬ x ¬ [ x C y [ y D ¬ S ( x , y ) ] ]
6) ¬ x ¬ [ x C y [ y D ¬ S ( x , y ) ] ]
7) ¬ x [ x C ¬ y [ y D ¬ S ( x , y ) ] ]
8) ¬ x [ x C y [ y D S ( x , y ) ] ]
9) ¬ x [ x C y [ y D S ( x , y ) ] ]
There is quite some redundancy here, but I hope this give you understanding about the correctness of the answer.

Do you have a similar question?

Recalculate according to your conditions!

New Questions in Discrete math

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?