Cynthia Bell

2021-12-16

A bicycle with 0.80-m-diameter tires is coasting on a level road at 5.6 m/s. A small blue dot has been painted on the tread of the rear tire. a. What is the angular speed of the tires? b. What is the speed of the blue dot when it is 0.80 m above the road? c. What is the speed of the blue dot when it is 0.40 m above the road?

Melinda McCombs

Beginner2021-12-17Added 38 answers

Given values:

a) We will find the angular speed as:

The angular velocity of a point at height

Using the Pythagorean theorem, we have:

a)

b)

c)

Jim Hunt

Beginner2021-12-18Added 45 answers

(1) Angular speed

Since 2n radians is one revolution,

(2) We have to add the tangential speed to the translational speed. The direction is important so we should consider velocity rather than the speed because the tangential velocity is changing but the translational velocity stays the same. At 0.80m the blue dot is at its highest point and the tangential velocity is in the direction of

(3) The blue dot is 0.4m above the road in two different places. The tangential velocity is vertically upwards or vertically downwards, for the trailing or leading edge of the wheel respectively. The resultant velocity is at an angle of 45° to the road and has a magnitude (speed) of

Don Sumner

Skilled2021-12-27Added 184 answers

a) d = diameter of tire = 0.80 m

r= radius of tire = (0.5) d = (0.5) (0.80) = 0.40 m

v = speed of bicycle = 5.6 m/s

w = angular speed of the tire

Speed of cycle is given as

b)

Speed blue of dot is given as

C. here angle b/w both the vectors will be 90 degrees,

Eliza Beth13

Skilled2023-05-11Added 130 answers

madeleinejames20

Skilled2023-05-11Added 165 answers

Three identical blocks connected by ideal strings are being pulled along a horizontal frictionless surface by a horizontal force $\overrightarrow{F}$ The magnitude of the tension in the string between blocks B and C is T=3.00N. Each block has mass m=0.400kg.

What is the magnitude F of the force?

What is the tension in the string between block A and block B??We have: A golf ball of mass 0.045 kg is hit off the tee at a speed of 45 m/s. The golf club was in contact with the ball for $5.0\times {10}^{-3}$ s. Find (a) the impulse imparted to the golf ball,and (b) the average force exerted on the ball by the golf club

???A box is sliding with a speed of 4.50 m/s on a horizontal surface when, at point P, it encounters a rough section. On the rough section, the coefficient of friction is not constant but starts at .100 at P and increases linerly with distance past P, reaching a value of .600 at 12.5 m past point P. (a) Use the work energy theorem to find how far this box slides before stopping. (b) What is the coefficient of friction at the stopping point? (c) How far would the box have slid iff the friciton coefficient didn't increase, but instead had the constant value of .1?

?

The spring in the figure (a) is compressed by length delta x . It launches the block across a frictionless surface with speed v0. The two springs in the figure (b) are identical to the spring of the figure (a). They are compressed by the same length delta x and used to launch the same block. What is the block's speed now?A spring gun's spring has a constant force k =400 N/m and negligible mass. The spring is compressed 6.00 cm and a ball with mass 0.0300 kg is placed in the horizontal barrel against the compressed spring.The ball is then launched out of the gun's barrel after the spring is released. The barrel is 6.00 cm long, so the ball leaves the barrel at the same point that it loses contact with the spring. The gun is held so the barrel is horizontal. Calculate the speed with which the ballleaves the barrel if you can ignore friction. Calculate the speed of the ball as it leavesthe barrel if a constant resisting force of 6.00 Nacts on the ball as it moves along the barrel. For the situation in part (b), at what position along the barrel does the ball have the greatest speed?

?A small rock with mass 0.12 kg is fastened to a massless string with length 0.80 m to form a pendulum. The pendulum is swinging so as to make a maximum angle of 45 with the vertical. Air Resistance is negligible.

?

a) What is the speed of the rock when the string passesthrough the vertical position?

b) What is the tension in the string when it makes an angle of 45 with the vertical?

c) What is the tension in the string as it passes through the vertical?

Calculate the actual mechanical advantage of a lever.

The change in internal energy of a system that has absorbed 2 kcal of heat and does 500 J of work is

A) 6400J

B) 5400J

C) 7860J

D) 8900JThe electric field 10 cm from a long wire is 2.4 kN/C. If wire carries uniform charge, what will be the field strength at 40 cm from the wire?

$A)0.6\text{}kN/C;\phantom{\rule{0ex}{0ex}}B)150\text{}N/C;\phantom{\rule{0ex}{0ex}}C)75\text{}N/C;\phantom{\rule{0ex}{0ex}}D)4.8\text{}kN/C$Read each statement below carefully and state, with reasons, if it is true or false : (a) The net acceleration of a particle in circular motion is always along the radius of the circle towards the centre (b) The velocity vector of a particle at a point is always along the tangent to the path of the particle at that point (c) The acceleration vector of a particle in uniform circular motion averaged over one cycle is a null vector

Two paths lead to the top of a hill. One is shorter and steeper and the second one is longer but less steep. For which of the two paths is the gain in potential energy more?

A) Path I

B) Path II

C) Same for both the paths

D) Data insufficientWhat does negative $\mathrm{\u25b3}G$ mean?

What is a lever.

The gravitational unit of force is_?

What do you mean by $1\mathrm{eV}$?