Bobbie Comstock
2021-12-17
A hot-air balloonist, rising vertically with a constant velocity of magnitude 5.00 m/s, releases a sandbag at an instant when the balloon is 40.0 m above the ground. After the sandbag is released, it is in free fall. (a) Compute the position and velocity of the sandbag at 0.250 s and 1.00 s after its release. (b) How many seconds after its release does the bag strike the ground? (c) With what magnitude of velocity does it strike the ground? (d) What is the greatest height above the ground that the sandbag reaches? (e) Sketch , and y-t graphs for the motion.
Fasaniu
Beginner2021-12-18Added 46 answers
Step 1
1Concepts and Principles
1- Particle under constant acceleration: If a particle moves in a straight line with a constant acceleration
(1)
(2)
2- The sulution to a quadration in the from:
Step 2
2 Given Data
Let the +y-direction be upwards and the initial position of the sand bag be at
Step 3
3 Required Data
In part (a), we are asked to find the position and the velocity of the sandbag at t=0.25 s and t=1 s.
In part(b), we are asked to find the time taken by the bag to reach the ground.
In part(c), we are asked to find the speed with which the bag strikes the ground.
In part(d), we are asked to find the maximum height the bag reaches above the ground.
In part(e), we are asked to sketch
Step 4
4 Solution
(a)
Model the sand bag as a particle under constant acceleration and apply Equations (1) and (2) to find the final velocity and final position of the sand bag as a function of time:
For t=0.25 s:
Therefore, at t=0.25 s, the sand bag is moving with an upward velocity of magnitude 2.55 m/s and is 40 m+0.944 m=40.9 m above the ground.
For t=0.1 s:
Therefore, at t=1 s, the sand bag is moving with an downward velocity of magnitude 4.8 m/s and is 40 m+0.1 m=40.1 m above the ground.
Rita Miller
Beginner2021-12-19Added 28 answers
Step 5
(b)
The sand bag strikes the ground when its final position is
Solve this equation for t using the quadratic formula from Equation (3), for
=3.41 s or -2.39 s
A negative value for time is phisically unacceptable. Therefore, the time take for the sand bag to reach the ground is t=3.41 s.
Step 6
(c)
The velocity of the bag before it atrikes the ground is fround from Equation (l):
Where t is the time taken for the sand bag to reach the ground which we found in part (b). Subsitute numerical values:
The negative values indicates that the direction of the velocity ia downwads.
Step 7
(d)
The bag reaches maximum heightwhen its final velosity
They by using Equation (2), we can find the maximum height:
y=1.28 m
Therefore, the maximum height of the sand bag is 40 m+1.28 m=41.3 m.
Don Sumner
Skilled2021-12-27Added 184 answers
Step 8
(e)
The graph is a horithontal line since the acceleration is constant at
Step 9
The velosity oa the sand bag is a function of time from Eguation (l) as follows:
Therefore, the graphs looks like:
Step 10
The y - t graph look like (let y=0 at the ground level):
Result
(a)At t=0.25 s, the sand bag is moving with an upward velocity of magnitude 2.55 m/s and is 40.9 m above the ground. At t=1 s, the sand bag is moving with an downwoard velosity of magnitude 4.8 m/s and is 40.1 m above the ground.
(b)t=3.41 s
(c) m/s
(d)The maximum height of the sand is 41.3 m.
(e)Click for graphs
Three identical blocks connected by ideal strings are being pulled along a horizontal frictionless surface by a horizontal force The magnitude of the tension in the string between blocks B and C is T=3.00N. Each block has mass m=0.400kg.
What is the magnitude F of the force?
What is the tension in the string between block A and block B??
We have: A golf ball of mass 0.045 kg is hit off the tee at a speed of 45 m/s. The golf club was in contact with the ball for s. Find (a) the impulse imparted to the golf ball,and (b) the average force exerted on the ball by the golf club
???A box is sliding with a speed of 4.50 m/s on a horizontal surface when, at point P, it encounters a rough section. On the rough section, the coefficient of friction is not constant but starts at .100 at P and increases linerly with distance past P, reaching a value of .600 at 12.5 m past point P. (a) Use the work energy theorem to find how far this box slides before stopping. (b) What is the coefficient of friction at the stopping point? (c) How far would the box have slid iff the friciton coefficient didn't increase, but instead had the constant value of .1?
?
The spring in the figure (a) is compressed by length delta x . It launches the block across a frictionless surface with speed v0. The two springs in the figure (b) are identical to the spring of the figure (a). They are compressed by the same length delta x and used to launch the same block. What is the block's speed now?
A spring gun's spring has a constant force k =400 N/m and negligible mass. The spring is compressed 6.00 cm and a ball with mass 0.0300 kg is placed in the horizontal barrel against the compressed spring.The ball is then launched out of the gun's barrel after the spring is released. The barrel is 6.00 cm long, so the ball leaves the barrel at the same point that it loses contact with the spring. The gun is held so the barrel is horizontal. Calculate the speed with which the ballleaves the barrel if you can ignore friction. Calculate the speed of the ball as it leavesthe barrel if a constant resisting force of 6.00 Nacts on the ball as it moves along the barrel. For the situation in part (b), at what position along the barrel does the ball have the greatest speed?
?A small rock with mass 0.12 kg is fastened to a massless string with length 0.80 m to form a pendulum. The pendulum is swinging so as to make a maximum angle of 45 with the vertical. Air Resistance is negligible.
a) What is the speed of the rock when the string passesthrough the vertical position?
b) What is the tension in the string when it makes an angle of 45 with the vertical?
c) What is the tension in the string as it passes through the vertical?
Calculate the actual mechanical advantage of a lever.
The change in internal energy of a system that has absorbed 2 kcal of heat and does 500 J of work is
A) 6400J
B) 5400J
C) 7860J
D) 8900J
The electric field 10 cm from a long wire is 2.4 kN/C. If wire carries uniform charge, what will be the field strength at 40 cm from the wire?
Read each statement below carefully and state, with reasons, if it is true or false : (a) The net acceleration of a particle in circular motion is always along the radius of the circle towards the centre (b) The velocity vector of a particle at a point is always along the tangent to the path of the particle at that point (c) The acceleration vector of a particle in uniform circular motion averaged over one cycle is a null vector
Two paths lead to the top of a hill. One is shorter and steeper and the second one is longer but less steep. For which of the two paths is the gain in potential energy more?
A) Path I
B) Path II
C) Same for both the paths
D) Data insufficient
What does negative mean?
What is a lever.
The gravitational unit of force is_?
What do you mean by ?