Determine whether the lines L1 and L2 are parallel, skew, or intersecting. If they intersect, find the point of intersection. L_1: \frac{x-2}{1}=\frac{y-3}{-2}=\frac{z-1}{-3}

UkusakazaL

UkusakazaL

Answered question

2021-05-04

Determine whether the lines L1 and L2 are parallel, skew, or intersecting. If they intersect, find the point of intersection.
L1:x21=y32=z13

Answer & Explanation

pattererX

pattererX

Skilled2021-05-05Added 95 answers

Rationalization. Geometrically speaking, two lines l1 and l2 are parallel if and only if the cross products of their directional vectors a and b is the zero vector <0,0,0>=0. That is:
a×b=0
Two lines are interesting if there exists a point (x,y,z) that is common in their domain. Lastly, two lines are skew if they are neither parallel or intersecting. We are given two sets of symmetric equations:
x21=y32=z13
x31=y+43=z27
Two lines must be one of the three (parallel, intersecting, or skew).
Acquiring the directional vectors. The directional vectors of a parametric equation correspond to the denominators of each line. Thus, we get:
x21=y32=z13v1=<1,2,3>
x31=y+43=z27v2=<1,3,7>
Checking if the vectors are parallel. We can check if the vectors are parallel through the cross product or by ratio and proportion. We do not need to do that here fortunately. Observe that the x-component of the vectors is the same but no the other components, which means that they are not parallel.
Checking if the vectors are intersecting: rationalization. A common way of doing this is by equating x and y and solving for parameters s and t. However, the given equations are still in symmetric form. Lets

Do you have a similar question?

Recalculate according to your conditions!

New Questions in High school geometry

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?