<mo movablelimits="true" form="prefix">max <mtext>&#xA0;</mtext> <mo movablelimits="true"

Davion Harding

Davion Harding

Answered question

2022-06-26

max   min [ α x 1 , β x 2 , γ x 3 ]     s.t.   λ 1 x 1 + λ 2 x 2 + λ 3 x 3 = c ,   α , β , γ , λ i , c   are constants
Well, that function is not differentiable , so what methods can be applied to solve for for the optimal values of x 1 , x 2 and x 3 ? Is knowledge of the λ s and c necessary, to at least some degree, or does a general approach/solution exist?

Answer & Explanation

upornompe

upornompe

Beginner2022-06-27Added 20 answers

You can reformulate it to be a Linear Program:
max z z α x 1 z β x 2 z γ x 3 λ 1 x 1 + λ 2 x 2 + λ 3 x 3 = c
which you can now feed into a Linear Programming solver and get a answer very easily. A closed-form expression for the optimum probably exists and this can be explored if you write the dual of this problem and use the sign constraints on the variables and parameters.
Sonia Gay

Sonia Gay

Beginner2022-06-28Added 7 answers

When the objective function is not differentiable, a common procedure is the use of subgradient method. Subgradient Methods - Stanford.

Do you have a similar question?

Recalculate according to your conditions!

New Questions in High school geometry

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?