For a variable that is normally distributed with a mean of 50 and a standard deviation of 5, approximately _? of the scores are between _?. A)95%, 45 and 55 B)95%, 40 and 60 C)68%, 40 and 60 D)95%, 35 and 65 E)99%, 40 and 60

Anish Buchanan

Anish Buchanan

Answered question

2020-11-05

For a variable that is normally distributed with a mean of 50 and a standard deviation of 5, approximately _? of the scores are between _?.
A)95%, 45 and 55
B)95%, 40 and 60
C)68%, 40 and 60
D)95%, 35 and 65
E)99%, 40 and 60

Answer & Explanation

ottcomn

ottcomn

Skilled2020-11-06Added 97 answers

Step 1
Empirical rule:
For symmetric or normal distributions,
68% of values fall within one standard deviation from the mean. That is, (m – s, m + s).
95% of values fall within two standard deviations from the mean. That is, (m – 2*s, m + 2*s).
7% of values fall within three standard deviations from the mean. That is, (m – 3*s, m + 3*s).
Step 2
Calculations:
The random variable x follows normal distribution with mean 50 and standard deviation 5.
That is, m = 50 and s = 5.
The calculation based on empirical rule is given below:
One σ limits:
(μ±σ)=(55,50+5)=(45,55)
68% of scores are between 45 and 55.
Two sigma limits:
(μ±2σ)=(502×5,50+2×5)=(40,60)
95% of scores are between 40 and 60.
Three σ limits:
(μ±3σ)=(503×5,50+3×5)=(35,65)
99% of scores are between 35 and 65.
Step 3
Obtain the correct option:
From the given 5 options, option (B) states that 95% of the scores lie between 40 and 60.
Hence, option (B) is correct.
Step 4
Answer:
Option (B) is correct.

Do you have a similar question?

Recalculate according to your conditions!

New Questions in High school statistics

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?