In classical (Newtonian) mechanics, every observer had the same past and the same future and if you had perfect knowledge about the current state of all particles in the universe, you could (theoretically) compute the future state of all particles in the universe.
With special (and general) relativity, we have the relativity of simultaneity. Therefore the best we can do is to say that for an event happening right now for any particular observer, we can theoretically predict the event if we know everything about the past light cone of the observer. However, it tachyons (that always travel faster than the speed of light) are allowed, then we cannot predict the future since a tachyon can come in from the space-like region for the observer and can cause an event that cannot be predicted by the past light cone. That is, I believe, why tachyons are incompatible with causality in relativity. Basically, the future cannot be predicted for any given observer so the universe is in general unpredictable - i.e. physics is impossible.
Now in quantum mechanics, perfect predictability is impossible in principle. Instead all we can predict is the probability of events happening. However, Schrodinger's equation allows the future wavefunction to be calculated given the current wavefunction. However, the wavefunction only allows for the predictions of probabilities of events happening. Quantum mechanics claims that this is the calculations of probabilities is the best that can be done by any physical theory.
So the question is: "Is the predictability of the future to whatever extent is possible (based on the present and the past) equivalent to the principle of causality?" Since prediction is the goal of physics and science in general, causality is necessary for physics and science to be possible.