Master Special Relativity with Expert Help and Solutions

Recent questions in Special Relativity
RelativityAnswered question
Landyn Allison Landyn Allison 2023-03-25

What makes the planets rotate around the sun.

RelativityAnswered question
l1voyax l1voyax 2023-02-11

What is proper motion.

RelativityAnswered question
pighead73283r pighead73283r 2022-11-05

Suppose we want to construct a wave function for 2 free (relativistic) fermions. As we are dealing with fermions the total wave function has to be antisymmetric under interchange of the coordinates,Suppose we want to construct a wave function for 2 free (relativistic) fermions. As we are dealing with fermions the total wave function has to be antisymmetric under interchange of the coordinates,
Ψ ( x 1 , x 2 ) = Ψ ( x 2 , x 1 )
If we assume that we can factorize the wave function in terms of single particle wave functions we can write
Ψ ( x 1 , x 2 ) = ψ 1 ( x 1 ) ψ 2 ( x 2 ) ψ 1 ( x 1 ) ψ 2 ( x 2 )
which fulfills the anti-symmetry requirement. The plane wave single particle states are given by,
ψ k , m s ( x ) = u k , m s ( s ) ϕ ( k r )
So expect the total wavefunction to be
Ψ ( x 1 , x 2 ) = u k 1 , m s 1 ( s 1 ) ϕ ( k 1 r 1 ) u k 2 , m s 2 ( s 2 ) ϕ ( k 2 r 2 ) u k 1 , m s 1 ( s 2 ) ϕ ( k 1 r 2 ) u k 2 , m s 2 ( s 1 ) ϕ ( k 2 r 1 ) = u k 1 , m s 1 ( s 1 ) u k 2 , m s 2 ( s 2 ) ϕ ( k 1 r 1 ) ϕ ( k 2 r 2 ) u k 1 , m s 1 ( s 2 ) u k 2 , m s 2 ( s 1 ) ϕ ( k 1 r 2 ) ϕ ( k 2 r 1 )
However
u ( k 1 , m s 1 ) u ( k 2 , m s 2 ) ϕ ( k 1 r 1 ) ϕ ( k 2 r 2 ) u ( k 2 , m s 2 ) u ( k 1 , m s 1 ) ϕ ( k 1 r 2 ) ϕ ( k 2 r 1 )
If I'm not mistaking one cannot freely change the order of the Dirac spinors u ( k 1 , m s 1 ) u ( k 2 , m s 2 ) u ( k 2 , m s 2 ) u ( k 1 , m s 1 ) so these expressions seem to be uncompatible. What would the correct expression look like?

RelativityAnswered question
caschaillo7 caschaillo7 2022-10-21

In classical (Newtonian) mechanics, every observer had the same past and the same future and if you had perfect knowledge about the current state of all particles in the universe, you could (theoretically) compute the future state of all particles in the universe.
With special (and general) relativity, we have the relativity of simultaneity. Therefore the best we can do is to say that for an event happening right now for any particular observer, we can theoretically predict the event if we know everything about the past light cone of the observer. However, it tachyons (that always travel faster than the speed of light) are allowed, then we cannot predict the future since a tachyon can come in from the space-like region for the observer and can cause an event that cannot be predicted by the past light cone. That is, I believe, why tachyons are incompatible with causality in relativity. Basically, the future cannot be predicted for any given observer so the universe is in general unpredictable - i.e. physics is impossible.
Now in quantum mechanics, perfect predictability is impossible in principle. Instead all we can predict is the probability of events happening. However, Schrodinger's equation allows the future wavefunction to be calculated given the current wavefunction. However, the wavefunction only allows for the predictions of probabilities of events happening. Quantum mechanics claims that this is the calculations of probabilities is the best that can be done by any physical theory.
So the question is: "Is the predictability of the future to whatever extent is possible (based on the present and the past) equivalent to the principle of causality?" Since prediction is the goal of physics and science in general, causality is necessary for physics and science to be possible.

One of the aspects of relativity Physics is taken by the concept of special relativity or the famous Eintsten's Theory that most people already know about. Regardless if you are using a special relativity calculator or working with word problems, it is essential to remember that we are dealing with the theory of gravity. Take a look at the answers and see how gravity can curve or warp in space. The reason why we are using special relativity equations is the relativity itself and the effect of the inertial frames. Don’t forget to check the general relativity concepts as well.