Given exponential equations,a) 3^{(4x - }=11b) 6^{x + 3}=3^{x}To solve for x

EunoR

EunoR

Answered question

2020-11-17

Given exponential equations,
a) 3(4x 1)=11
b) 6x + 3=3x
To solve for x

Answer & Explanation

lamusesamuset

lamusesamuset

Skilled2020-11-18Added 93 answers

Sub part a)
We have,
3(ax  1)=11
Applying log to the base 10 on both sides,
 log10 3(4x  1)= log1011
 (4x  1)log103=log1011
 4x  1 =(log1011)/(log103)
 4x  1 = log311
 x=(1/4)[(log311) + 1]
 x=0.795664585
(Rounded to 9 decimals)
Identities used:
(logax)/(logay)=logyx
log ab=b log a
Sub part b)
We have,
6x + 3=3x
Applying log to base 2 on both sides,
 (x + 3)log2 6=x(log23)
 (x + 3)log2 (3× 2)=x(log23)
 (x + 3)[(log23) + (log22)]=x(log23)
 (x + 3)[(log23) + 1]=x(log23)
 x(log23) + 3(log23) + x + 3=x(log23)
 log233 + x + 3=0
 log29 + x + 3=0
 x= 3  log29
 x= 6.169925001
(Rounded to 9 decimals)
Identities used:
logaxy=(logax) + (logay)
logab=b log a

Do you have a similar question?

Recalculate according to your conditions!

Ask your question.
Get an expert answer.

Let our experts help you. Answer in as fast as 15 minutes.

Didn't find what you were looking for?